

índice

SISTEMAS DE NUMERACIÓN Y CÓDIGOS	2
ÁLGEBRA DE BOOLE. PUERTAS LÓGICAS	4
ELECTROSTATIC SENSITIVE DEVICES	8
CIRCUITOS COMBINACIONALES	9
FLIP-FLOPS.	12
CIRCUITOS SECUENCIALES.	
DAC-ADC. MEMORIAS.	18
MEMORIAS.	19
PLD-S.	21
SISTEMAS DE NUMERACIÓN Y CÓDIGOS. RESPUESTAS	
ÁLGEBRA DE BOOLE. PUERTAS LÓGICAS. RESPUESTAS	24
CIRCUITOS COMBINACIONALES. RESPUESTAS	26
FLIP-FLOPS. RESPUESTAS.	29
CIRCUITOS SECUENCIALES. RESPUESTAS.	31
DAC-ADC. RESPUESTAS	34
MEMORIAS. RESPUESTAS.	35
PLD-S. RESPUESTAS	37

SISTEMAS DE NUMERACIÓN Y CÓDIGOS

□ 1. Convertir a hexadecimal los siguientes números:

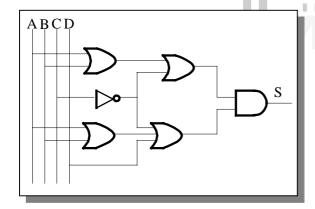
a)	327			b)	256 / ₈			c)	001110100111 / _{BCD}		
d)	16			e)	10110110	/2		f)	4.26 / ₈		
g)	1011.011 / ₂										
	2. Convertir a binario natural los siguientes números:										
	2. Convertir a	ı om	ario natura	11 10	s signiemes	a nu.	meros:				
a)	11100001 / _{BC}	D		b)	3A H			c)	32		
d)	53 / ₈			e)	3.25 / ₈			f)	16.A H		
	3. Convertir a BCD-N los siguientes números:										
- \											
a)	11100000110	/ U /B	CD	b)	29H			C)	52.5		
d)	10111										
_	4. Realizar las siguientes restas en binario:										
a)	(1011101) – (110	1001)	b)	(10001) –	(11	100)	c)	(11100) - (10001)		
_	5. Obtener el	valo	or decimal (de lo	os números	bin	ários dados en	los s	siguientes sistemas:		
sig	no-magnitud:										
a)	01101110			b)	10000101			c)	10000000		
cor	nplemento a u	no:									
a)	10011011			b)	10000000			c)	01101101		
cor	nplemento a d	os:									
a)	10110101			b)	11111111			c)	00000001		
	6. Representa	ır en	sistema co	omp]	lemento a d	los l	los siguientes n	úme	ros:		
a)	-29	b)	45	c)	-64	a)	256 e)-1	L⊿ð	f)- 129		
g)	15	h)	99								

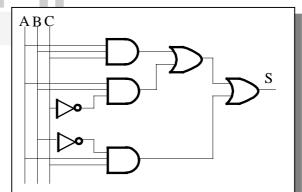
JMMz

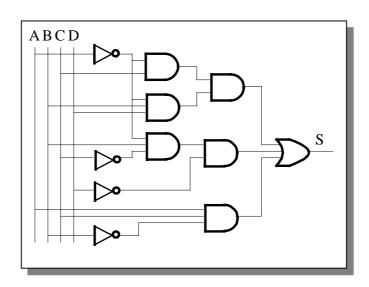
a)	115 + 12	b)	122 - 63	c) 92 – (-25)
d)	-68 – 49	e)	114 + 29	
	8. Convertir a código Gray l	los s	iguientes n	úmeros:
a)	135	b)	96	c) 247
-	9. Convertir a decimal los si	iguid	entes núme	ros del código Gray.
a)	1111	b)	011100	c) 10011010
<u> </u>	10. Realizar el código de pa	rida	d par a part	ir del BCD- AIKEN.
	11. Representar en formato	con	na flotante d	de precisión simple el número 3528,015625
	precisión simple:			ente número dado en formato coma flotante de 000011011100010000

□ 7. Realizar en complemento a dos las operaciones siguientes, indicando el estado del bit de

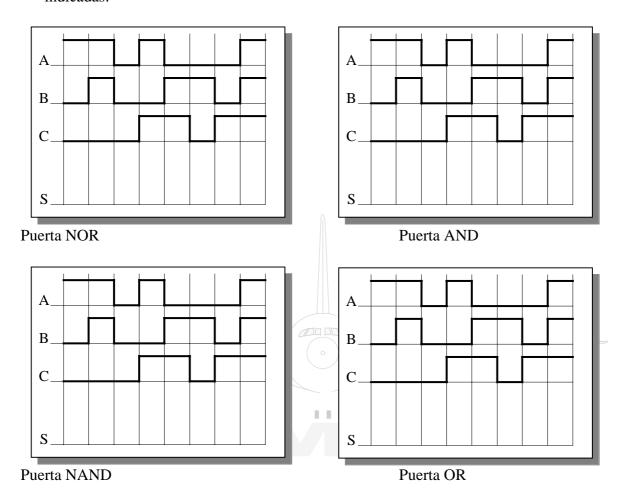
Carry y del bit de Overflow (trabajamos con 8 bits).

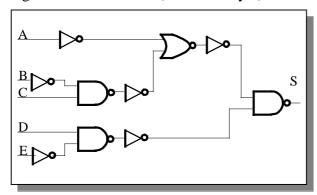

ÁLGEBRA DE BOOLE. PUERTAS LÓGICAS

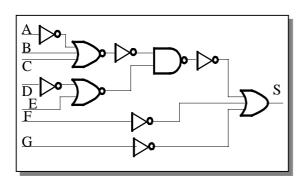

- □ 1. Convertir a diagrama de contactos las siguientes funciones:
- a) $F1 = (A + B) A + \overline{A} B$
- b) F2=A B C + A B + A C c) F3=A + B + A B C
- 2. Aplicando el Álgebra de Boole, simplificar las siguientes funciones:
- a) F1 = A B + A C + A
- b) F2 = A + B (A C)
- c) F3=A(BC)


- d) F4=(A + B)(C + A)
- e) $F5=(A B)A + B \overline{A}$ f) $F6=A B C + A \overline{B} C + A \overline{B} C \overline{D}$
- g) F7=A B C D + A B + A B D(E + F)

h) $F8=[(A+B)+C]+(\overline{A}+B)$


- i) F9=(A + B) [C(B + C)]
- j) F10= B C (A + C)(A + B)
- 3. Implementar con puertas lógicas antes y después de la simplificación, las funciones anteriores.
- 4. Simplificar los siguientes circuitos.


□ 5. Dibujar la señal de salida que se obtiene al aplicar las siguientes señales a las puertas indicadas:



- □ 6. Implementar con el mínimo número de puertas NAND posible, las funciones XOR y XNOR.
- □ 7. Implementar con el mínimo número de puertas NOR posible, las funciones XOR y XNOR.
- □ 8. Implementar la siguiente función utilizando simbología IEEE/ANSI.

$$F=(\overline{A}\overline{B}+\overline{A}+\overline{B})\overline{C}$$

9. Determinar que condiciones deben cumplir las variables de entrada para que la salida del siguiente circuito sea: a) **ACTIVA** y b) **NO ACTIVA**

10. Determinar que condiciones deben cumplir las variables de entrada para que la salida del siguiente circuito sea: a) **ACTIVA** y b) **NO ACTIVA**

□ 11. Simplificar mediante Karnaugh las siguientes funciones:

a)
$$\mathbf{F1} = \overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} + \overline{\mathbf{A}} \mathbf{B} \mathbf{C} + \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}} + \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}$$

b)
$$F2 = \overline{A} B C D + A \overline{B} C D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D$$

c)
$$F3 = (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (A + \overline{B} + \overline{C}) (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

e)
$$\mathbf{F5} = \Sigma_3 (0, 1, 3, 6)$$

f)
$$\mathbf{F6} = \Pi_{3}(3, 5, 7)$$

g)
$$F7 = \Sigma_4 (0, 2, 4, 5, 6, 7, 14)$$

h)
$$F8 = \Pi_4 (3, 5, 7, 10, 12, 13)$$

i)
$$F9 = \Sigma_3(1, 3, 5) + d(0,7)$$

j)
$$F10=\Pi_3(0,3,4,7)+d(1,2)$$

k)
$$F11=\Sigma_4(0, 2, 4, 5, 6, 7, 14) + d(1, 9, 10, 11, 12)$$

1)
$$F12=\Pi_4(0,3,4,7,10,13,14,15)+d(1,2,5,6)$$

□ 12. Poner en forma de Maxterms las siguientes funciones:

a)
$$\mathbf{F1} = \mathbf{\overline{B}} \mathbf{C} + \mathbf{A} \mathbf{\overline{C}}$$

b)
$$F2 = A B + A C$$

□ 13. Poner en forma de Minterms las siguientes funciones:

a) **F1**=
$$(A + C)(B + C)$$

b)
$$F2 = (A + B)(A + C)$$

□ 14. Simplificar las siguientes funciones:

A	В	C	D	F1	F2	F3	F4
0	0	0	0	0	1	1	0
0	0	0	1	0	1	1	1
0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	0
0	1	0	0	1	0	1	0
0	1	0	1	1	1	0	1
0	1	1	0	0	1	0	1
0	1	1	1	0	0	0	0
1	0	0	0	1	0	1	0
1	0	0	1	1	1	1	1
1	0	1	0	0	0	1	X
1	0	1	1	0	1	1	X
1	1	0	0	0	1	1	X
1	1	0	1	1	1	0	X
1	1	1	0	0	0	1	X
1	1	1	1	1	1	1	X

15. Demostrar.

a)
$$(A + B)(A + C) = A C + A B$$

b)
$$A B + \overline{A} C = (A + C)(\overline{A} + B)$$

c)
$$\mathbf{A} \mathbf{B} + \overline{\mathbf{A}} \mathbf{C} + \mathbf{B} \mathbf{C} = \mathbf{A} \mathbf{B} + \overline{\mathbf{A}} \mathbf{C}$$

d)
$$(A + B)(A + C)(B + C) = (A + B)(A + C)$$

16. Simplificar.

a) **F1= A B + A C +
$$\bar{A}$$**

b)
$$F2 = \overline{A} + B(A \overline{C})$$

c)
$$F3 = A(B C)$$

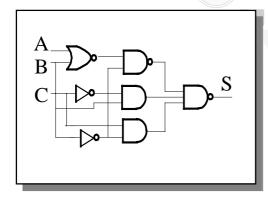
d) **F4**=
$$(\bar{A} + B)(\bar{C} + A)$$

e)
$$F5 = (A B) + C A$$

f)
$$\mathbf{F6} = (\mathbf{A} + \mathbf{B})(\mathbf{B} + \mathbf{C})$$

g)
$$F7 = A \overline{B} C + A B \overline{C} + \overline{A} B C D$$

h)
$$F8 = \overline{(A + B + C)(A + B)}$$
 i) $F9 = ABC + \overline{B}C + \overline{A}C$


i)
$$\mathbf{F9} = \mathbf{ABC} + \mathbf{B} \mathbf{C} + \mathbf{AC}$$

17. Simplificar e implementar utilizando solamente puertas NAND, la función dada:

$$S = \overline{A} \overline{B} \overline{C} D + B \overline{C} D + \overline{A} \overline{C} + A$$

□ 18. Simplificar e implementar con el mínimo número de puertas:

$$S = \overline{D} \overline{C} \overline{B} \overline{A} + \overline{D} \overline{C} \overline{A} + \overline{D} \overline{C} \overline{B} \overline{A} + \overline{C} \overline{A} + \overline{D} \overline{C} \overline{A}$$

□ 19. Realizar una tabla donde se indique todas las condiciones que tienen que cumplir A, B y C para que la salida S sea activa.

20. Simplificar la función dada y diseñar el circuito lógico que la cumpla utilizando para el diseño solamente puertas NOR.

$$S = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} D + A \overline{C} + \overline{D}$$

□ 21. Simplificar la función dada y dar el resultado en forma de maxterms.

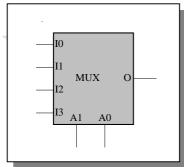
$$S = C B A + C B D + \overline{C} \overline{A} + \overline{D} C \overline{B} + \overline{D} C B \overline{A} + D C \overline{B}$$

- 22. Simplificar por el método de Quine McCluskey las siguientes funciones:
- a) $S = \Sigma_4 (2, 4, 6, 8, 9, 10, 12, 13, 15)$
- a) $S = \sum_{5} (2, 3, 7, 10, 12, 15, 27) + d(5, 18, 19, 21, 23)$
- c) $S = \prod_{5} (1, 2, 3, 6, 10, 12, 18, 7, 11, 13, 19, 21, 26, 28, 27, 29)$

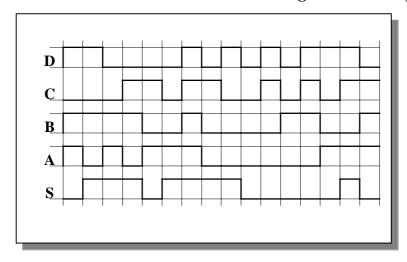
ELECTROSTATIC SENSITIVE DEVICES.

- □ 1. Que significan los acrónimos ESD y ESDS.
- □ 2. De que forma se puede generar electricidad estática.
- □ 3. En que sentido influye la humedad relativa del aire en la generación de una ESD.
- 4. Si se ponen en contacto una prenda de lana y una hoja de acetato, en que sentido habrá transferencia de cargas.
- 5. Cuanto voltaje puede generar una persona caminando por una alfombra, en un ambiente de humedad relativa por debajo del 25%.
- 6. Clasificar los efectos producidos por la ESD e indicar en que consiste cada uno de ellos.
- □ 7. Que se entiende por sensibilidad a la ESD de un componente.
- 8. Según la dirección de la descarga, que tipos de ESD conoces. Describe cada uno de ellos.
- 9. Principios básicos para el control de ESD. Describir cada uno de ellos.
- □ 10. Que elementos de protección podemos utilizar para minimizar la ESD.
- 11. Enumera los elementos que componen un sistema de protección contra ESD en un puesto de trabajo de manipulación de tarjetas y componentes electrónicos.
- □ 12. Dibujar los símbolos que se utilizan para indicar que debemos tomar precauciones tipo ESD.
- □ 13. En que situaciones debe realizarse la manipulación de ESDS.
- □ 14. Precauciones a tomar cuando se recibe un elemento ESDS.
- □ 15. Como se deben proteger los elementos ESDS contra la ESD para su almacenamiento.
- □ 16. Precauciones a tomar cuando se manipulan elementos ESDS fuera de su bolsa protectora.
- □ 17. Requerimientos en las áreas protegidas contra ESD.
- □ 18. Que actividades comprende la comprobación del área de control ESD.
- □ 19. Reglas a seguir para conseguir una protección efectiva de los IC-s contra la ESD.
- 20. Precauciones a tener en cuenta en la manipulación de LRU-s dentro de la aeronave.
- 21. Cual es la función de los descargadores de estática en una aeronave.
- 22. Cual es la función de los Ground Points situados en el fuselaje de una aeronave.

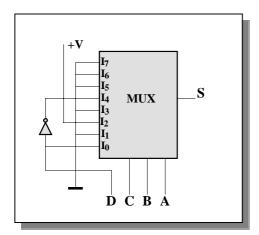
CIRCUITOS COMBINACIONALES.

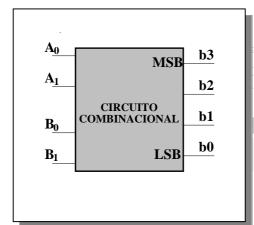

- □ 1. Diseñar un circuito lógico que indique cuando en una votación de cuatro miembros se produce mayoría de "si", mayoría de "no" y cuando hay empate.
- 2. Las cuatro entradas de un circuito lógico deben permanecer siempre entre los valores de 0111 y 1001. Diseñar otro circuito lógico, que nos indique (mediante una señal luminosa) cuando las entradas están fuera de estos márgenes.
- □ 3. Repetir el ejercicio 2 suponiendo que las cuatro entradas solo pueden tomar un valor BCD-N.
- □ 4. Repetir el ejercicio 2 suponiendo que las cuatro entradas solo pueden tomar un valor BCD-X3.
- □ 5. Diseñar un circuito lógico que nos indique cuando dos números binarios de dos bits son iguales.
- ☐ 6. Diseñar un circuito lógico que nos indique cuando un número binario A de dos bits, es mayor que otro B, también de dos bits.
- □ 7. Diseñar un circuito lógico que nos indique cuando un número binario A de 4 bits, es mayor, menor o igual que otro número B, también de 4 bits.
- □ 8. Diseñar un circuito lógico que multiplique dos números binarios de dos bits. El resultado debe ser dado en binario natural.
- 9. Diseñar un generador de código de paridad impar basado en el código BCD N.
- □ 10. Diseñar, con puertas NAND de dos entradas, un codificador 8-3 líneas con entradas activas a nivel bajo.
 - □ 11. Diseñar con puertas NAND, un codificador DECIMAL-BINARIO.
- □ 12. Diseñar con puertas NAND, un decodificador 3-8 líneas con salidas activas a nivel bajo.
- □ 13. Diseñar un decodificador BCD-DECIMAL (4-10 líneas) con salidas activas a nivel bajo.
 - □ 14. Diseñar un decodificador BINARIO-GRAY de 3 variables.
- □ 15. Diseñar un decodificador BCD-7 segmentos, con indicación de "E" para entradas no BCD y para utilizar con displays de ánodo común.
- □ 16. Implementar con un decodificador de salidas activas a nivel bajo, la siguiente función:

$$F = A B + \overline{A} \overline{C} + A B C$$


- □ 17. Implementar un decodificador de 5 a 32 líneas a partir de decodificadores de 3 a 8 líneas.
 - □ 18. Implementar las siguientes funciones con MUX. de tres entradas de selección.

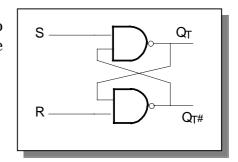
a)
$$\mathbf{C} \mathbf{B} \mathbf{A} + \mathbf{D} \mathbf{C} \mathbf{A} + \mathbf{D} \mathbf{C} \mathbf{B} \mathbf{A} + \mathbf{D} \mathbf{C} \mathbf{A} + \mathbf{D} \mathbf{C} \mathbf{B} \mathbf{A}$$


- b) $\mathbf{D} \mathbf{C} \mathbf{A} + \mathbf{D} \mathbf{C} \mathbf{B} + \mathbf{D} \mathbf{B} \mathbf{A}$
- □ 19. Diseñar e implementar con puertas lógicas un multiplexor de 8 entradas de datos y una entrada de habilitación.
- □ 20. A partir de multiplexores como el anterior (símbolo lógico), diseñar un multiplexor de 32 entradas de datos.
- 21. Realizar, a partir de sumadores totales de 4 bits, un sumador de dos números
 BCD. El resultado debe ser también BCD.


- 22. Generar las funciones suma y acarreo de un sumador completo mediante dos circuitos multiplexores (como el dado en la fig.) y un inversor.
- 23. Diseñar un convertidor de código BDC-N a BCD-X3
- □ 24. Diseñar un convertidor de código de tres bits que convierta binario a decimal.

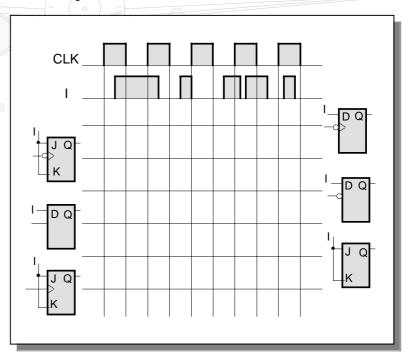
 25. Diseñar un circuito combinacional con el <u>mínimo</u> número de puertas posible, que genere la salida S a partir de las entradas A, B, C y D dadas.

- 26. a- Dado el circuito multiplexor de la figura, obtener la función de salida S en forma de minterms.
- b- Simplificar la función e implementar con puertas NAND.

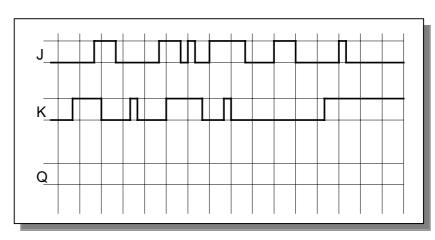


- □ 27. a.- Diseñar el circuito combinacional que sea capaz de multiplicar dos palabras (A y B) de dos bits cada una (A₁A₀ y B₁B₀), dando el resultado en binario (b3 b2 b1 b0).
- b.- Realizar el cableado del multiplicador. Para ello solo se dispone de los siguientes IC-s: SN7400N; SN7410N; SN7420.

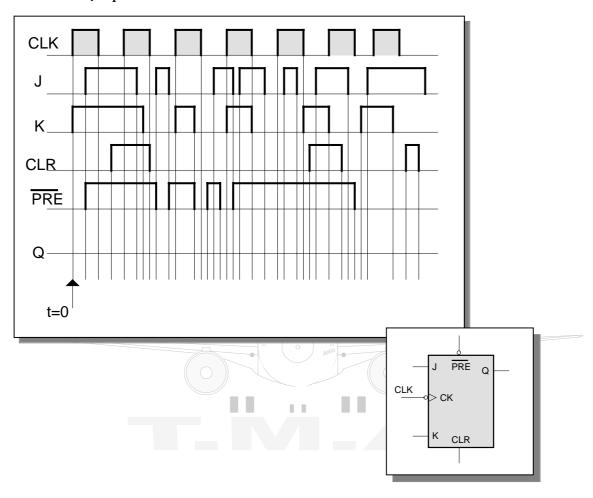
FLIP-FLOPS.


1. Determinar la tabla de la verdad (R, S y Q_T como entradas), la tabla simplificada y la tabla de transición de la báscula de la figura.

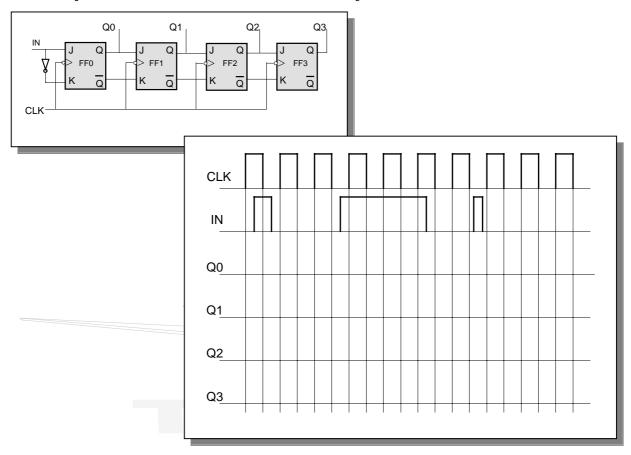
R	S	$Q_{T+\Delta t}$	$\overline{Q_{T+\Delta t}}$
0	0	Q_{T}	$\overline{\overline{Q_T}}$
0	1	1	0
1	0	0	1
1	1	1	1



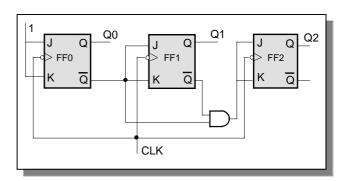
- 2. Comparar el comportamiento de la báscula del ejercicio 1 con el comportamiento de la báscula cuya tabla de la verdad es la que se da. Sacar conclusiones.
- □ 3. Que estado tendrá la salida Q de esta última báscula si partiendo de la combinación prohibida ponemos R=S=0? Razonar.
- □ 4. Diferencia entre entradas síncronas y entradas asíncronas en una báscula.


5. Determinar la salida Q para cada una de las básculas dadas cuando se aplica a todas la señal I.

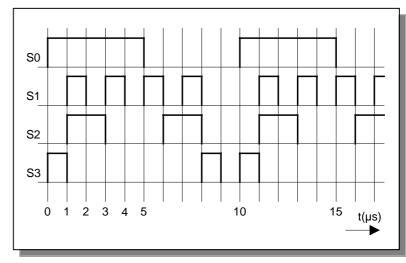
 6. Dibujar la señal de salida de una báscula J-K cuando son aplicadas en sus entradas las siguientes señales.

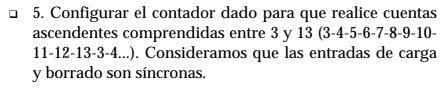


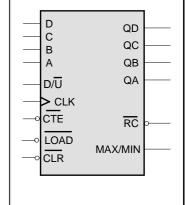
$\ \square$ 7. Salida Q a partir del instante t=0.



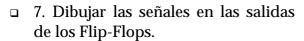
CIRCUITOS SECUENCIALES.

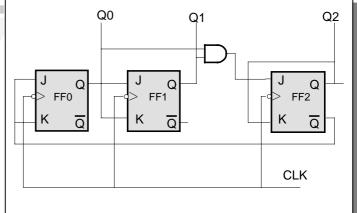

□ 1. Dibujar las señales de las salidas Q0, Q1, Q2 y Q3.

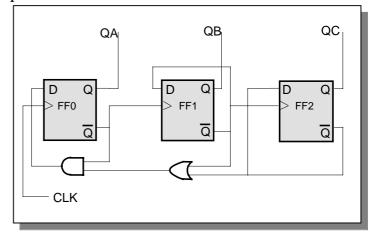

□ 2. Dibujar las señales de Q0, Q1, y Q2.

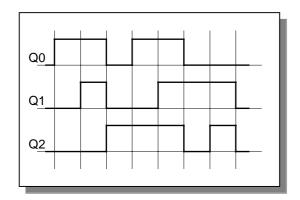


 3. Diseñar un circuito con cuatro salidas, que genere de forma síncrona las señales dadas. Calcular la frecuencia de reloj.


□ 4. Realizar un contador que evolucione en cuentas pares (0-2-4-6) siempre que una señal de control C, valga cero, y en cuentas impares (1-3-5-7) siempre que C valga uno. La señal de control (C), solo puede cambiar en el estado mas alto, bien de la cuenta par o cuenta impar, dando como resultado un incremento en una unidad si esta en forma de conteo par, y un decremento de una unidad si está en forma de conteo impar.

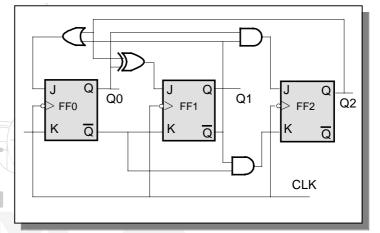


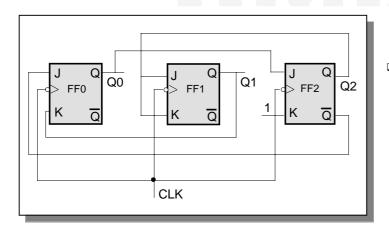

6. Lo mismo que el anterior pero para que realice cuentas descendentes desde el número 13.



□ 8. Diseñar un contador de números impares hasta el número 15.

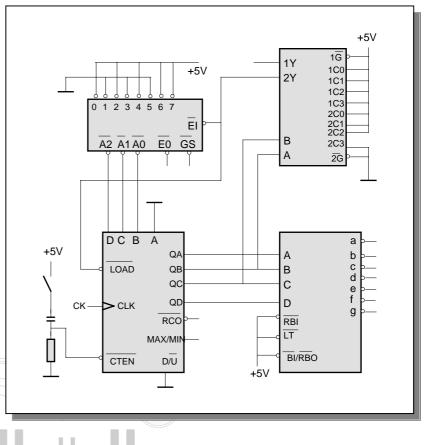
 9. Considerando inicialmente QA=QB=QC=0, dibujar las señales de las salidas de los Flip-Flops al aplicar al circuito una señal de reloj de 12 periodos.




□ 10. Diseñar un registro de desplazamiento de carga serie-lectura serie de tres bits.

11. Diseñar un circuito que genere de forma síncrona las señales dadas.

□ 12. Dibujar las señales que se obtienen en Q0, Q1 y Q2.

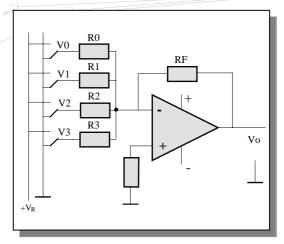


□ 13. Dibujar las señales de las salidas de los FF-s. Tomar al menos diez ciclos de reloj.

□ 14. Indicar si son verdaderas (V) o falsas (F) las siguientes afirmaciones.

En un contador asíncrono todos los FF-s cambian de estado al mismo tiempo	
Todos los contadores BCD son contadores de décadas	
Los contadores de anillo y los Jonhson son contadores síncronos	
Un cero lógico aplicado a la entrada clear de una báscula J-K produce siempre un cero lógico a la salida.	

- **15**.
 - a. Dibujar las señales en QA, QB, QC, y QD para doce ciclos de reloj.
 - b. Que valor tomarán las salidas a, b, c, d, e, f, y g después del impulso noveno de reloj?
 - c. Que tipo de display debemos conectar al decodificador para poder visualizar la secuencia de conteo?
 - d. Que sucede si cerramos S?
 - e. Describe de forma breve y general el funcionamiento del circuito. (inicialmente las salidas del contador están todas a cero)

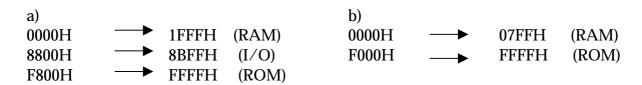

- □ 16. Diseñar un contador ascendente de módulo 6.
- 17. Diseñar un contador reversible de módulo 8.

DAC-ADC.

- □ 1. Transductor y actuador. Misión.
- □ 2. Un DAC de 8 bits produce una tensión de salida de 3,14 v con una entrada digital de 11100111. Calcular la tensión de salida a plena escala (FS).
- □ 3. Cual es la resolución en voltios y en % de un DAC de 12 bits cuya salida FS es de 5.5v.
- 4. La salida de un DAC varia entre 0 y 8 mA. Cuantos bits debe tener el circuito para que la resolución sea menor de 40 μA. Calcular la resolución para el número de bits obtenido.
- □ 5. La velocidad de un motor es controlada a través de un DAC. La salida del circuito varia desde 0 hasta 3 mA. Esta corriente una vez amplificada, se aplica al motor, originando una variación en su velocidad desde 0 hasta 3000 r.p.m. Cuantos bits se necesitan para poder mantener la velocidad con una desviación máxima de 3 r.p.m.? Con esos bits cuanto se puede ajustar la velocidad a 1257 r.p.m.?
- 6. Para cada uno de los posibles valores de V0, V1, V2 y V3, realizar una tabla donde aparezca la Vo. Dibujar la Vo en función de las tensiones de entrada.

DATOS:

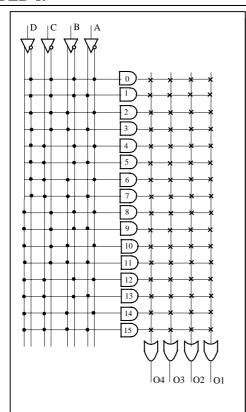
 $R0=RF=8K\Omega,\ R1=4K\Omega,\ R2=2K\Omega,\ R3=1K\Omega,\ Vo\le \mid 10V\mid.$



- □ 7. Un BCD DAC de 12 bits tiene un factor de ponderación del LSB de 0,01 V. Calcular: a). El tamaño de paso en voltios y %. b). La salida FS. c). Tensión de salida para el código 0101 1001 0011.
- \Box 8. Un ADC de rampa digital tiene las siguientes características: Salida del DAC a FS 10,23V, entrada del DAC 8 bits, V_T= 0,1 mV, f=1MHz. Calcular: **a**). Salida del ADC para una entrada de 2,65V. **b**). Tiempo de conversión. **c**). Resolución del ADC.
- 9. Un ADC de aproximaciones sucesivas de 12 bits tiene una resolución de 8 mV.
 Calcular la salida que se obtiene para una entrada analógica de 1,324 V.
 - □ 10. Si aplicamos una f=500KHz al ADC anterior, ¿Tiempo de conversión?

MEMORIAS.

- □ 1. Sea una memoria de 64K x 4 organizada en forma de matriz cuadrada. Determinar:
 - a) El número de celdas de memoria
 - b) La estructura de la matriz.
 - c) Número de líneas del data bus.
 - d) Número de líneas del address bus.
- □ 2. Indicar las direcciones iniciales y finales de cada uno de los bloques que resultan de dividir un mapa de memoria de 64K en:
 - a) 8 Bloques iguales.
- b) 32 Bloques iguales
- □ 3. Que rango de direcciones están comprendidas en un chip de memoria de 0.5K cuya dirección inicial es 0400H.
- □ 4. Indicar la cantidad de direcciones (en K) que existen entre las direcciones siguientes (incluidas estas).
 - a) FF00H y FFFFH
- b) E000H y FFFFH
- c) 0A000H y 49FFFH
- □ 5. Realizar un banco de memoria de 8K X 4 partiendo de 3 módulos de memoria RAM de 2K X 4 y un módulo de memoria ROM también. de 2K X 4.
- 6. Realizar un banco de memoria RAM de 4K X 16 partiendo de módulos de 4K X
 4.
- 7. Realizar un banco de memoria RAM de 8K X 8 partiendo de módulos de 4K X
 4.
- □ 8 Realizar un circuito de CS# de memoria RAM de 2K cuya dirección inicial es 0000H.
- □ 9. Realizar un circuito de CS# de memoria RAM de 2K cuya dirección inicial es 0800H.
- □ 10. Realizar la lógica de selección para el siguiente mapa de memoria y dibujar el circuito total con los diferentes chips, AB, DB y líneas de R/W#. (todos los módulos con CS#)


 □ 11. Implementar con decodificadores los siguientes mapas:

- $\hfill \square$ 12. Indicar el tamaño de los bloques de memoria y espacio libre de los mapas del ejercicio 11.
 - □ 13. Valor de las líneas del AB que seleccionan cada bloque del ejercicio 11.

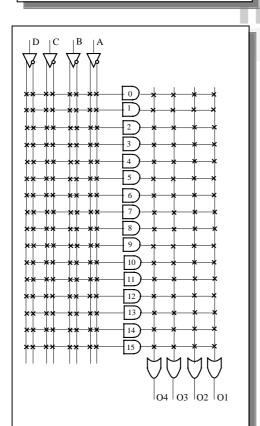
PLD-s.

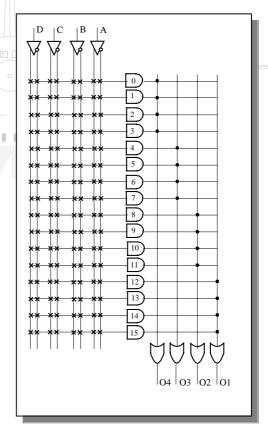
Señalar las conexiones que se deben fundir:

□ 1. PROM.

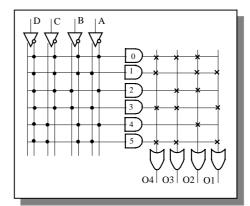
programar para que multiplique dos números de dos bits.

□ 2. PAL.


$$O2=DCB+\overline{CBA+D}$$


$$O3 = 1$$

$$O4 = 0$$


□ 3. PLA.

$$O2 = C$$
 XNOR D

4. Escribir las funcionesO1, O2, O3, O4

SISTEMAS DE NUMERACIÓN Y CÓDIGOS. Respuestas.

a)	147H b) A	EH c) 4A	.H d)	10H e)	В6Н	f) 4,58H	g) B,6	1.
a)) 00111010 _{/2}	c) 100	0000 _{/2} d)	101011 /	e) 011,0	10101 /2	2.
a)	f) 10110,1010 100000000110		b) 0100	00001 _{BCDN}	c) 0101	.00100101 _{/BCD}	n	3.
a)	d) 0001000000 11110100 _{/2}	00100010001 _{B0}	110101	/2	c)	01011/2	0	4.
sig	no-magnitud:	a) +110	a	b) -5	c)	-0		5.
CO	mplemento a uno	o: a) -100		b) 127	c)	+109		
CO	mplemento a dos	s: a) -75		b) -1	c)	+1		
a)	100011 b) 0101101	2) 100000	0 d) 01	00000000	e)10	0000000	6.
	f)101111111	g) 01111	h) 011	100011				
a)	01111111 C(0)	, V(0) b)	0011101	1 C(1), V(1)	c)	01110101 C(0), V(0)	7.
d)	10001011 C(1)	, V(1) e)	1000111	1 C(0), V(1)				
a)	11000100	b)	1010000		c)	10001100		8.
a)	10	b)	23		c)	236		9.
00	000, 10001, 100	10, 00011, 1010	00, 11011, 0	01100, 1110	1, 11110, 0	1111		10.
		01000	0101010111	10010000000	001000000			11.
								12.

-7,360669995 10²⁶

JMMz

ÁLGEBRA DE BOOLE. PUERTAS LÓGICAS. Respuestas.

2.

b)
$$F2=A+BC$$

c)
$$F3=\overline{A}+B+\overline{C}$$

d)
$$F4=\overline{A}(B+C)$$

4.

$$A + B + C$$

$$A(B+C)$$

$$\overline{AB}$$
 (C **X-NOR** D) + \overline{AB} C

a 6.

$$S = \overline{A} \overline{B} \overline{A} B$$

$$S = \overline{\overline{A}} \overline{\overline{B}} \overline{A} \overline{B}$$

a 7.

$$\overline{B} + \overline{A} + \overline{A} + \overline{B}$$

$$\overline{B} + A + \overline{A} + B$$

9.

ACTIVA:

[A baja **O** (B baja **Y** C alta)] **Y** (D alta **Y** E baja)

NO ACTIVA:

[A alta Y (B alta O C baja)] O (D baja O E alta)

ACTIVA:

[(A baja O B alta O C alta) Y (D alta Y E baja)] O F baja O G baja

NO ACTIVA:

[(A alta Y B baja Y C baja) O D baja O E alta] Y F alta Y G alta

11.

10.

a)
$$F1 = \overline{A} + B C$$

b)
$$F2 = A D + B C$$

d)
$$F4=(B+C+D)(A+B+D)(A+B+C)(A+B+C+D)$$

e)
$$F5 = AB + AC + ABC$$

f)
$$F6 = (A + C)(B + C)$$

e)
$$F5 = AB + AC + ABC$$
 f) $F6 = (A + C)(B + C)$ g) $F7 = AD + AB + BCD$

h)
$$F8=(A+C+D)(A+B+D)(A+B+C)(A+B+C+D)$$
 i) $F9=C$

k)
$$F11 = \overline{A} \cdot \overline{C} + \overline{A} \cdot \overline{B} + \overline{C} \cdot \overline{D}$$

k)
$$F11 = AC + AB + CD$$
 l) $F12 = A(B+D)(C+D)$

12.

a)
$$F1 = (A + B + C) (A + B + C) (A + B + C) (A + B + C)$$

JMMz

b)
$$F2=(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)$$

13.

14.

$$F1 = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{D} + A \overline{B} \overline{C}$$

$$F2 = (B + \overline{C} + D) (A + \overline{B} + C + D) (A + \overline{B} + \overline{C} + \overline{D}) (\overline{A} + \overline{C} + D) (\overline{A} + B + D)$$

$$F3 = (A + C + D) (A + B + D) (B + C + D)$$

16.

a)
$$F1 = A + B + C$$

b)
$$F2 = (A + B)((A + C)$$

c)
$$F3 = A + B + C$$

d)
$$F4 = (A + B)(C + A)$$

e)
$$F5 = A B + C A$$

f)
$$F6 = (A + B)(B + C)$$
 g) $F7 = ABCD + ABC + ABC$

h)
$$F8 = (A B C)$$

$$i) F9 = C$$

17.

$$S = A + \overline{C}$$

18.

$$S = C X - NOR A$$

19.

No existe condición que active la salida.

20.

$$S = (A + C + D)(A + B + D) = AB + AC + D$$

21.

$$S = \overline{A} + C$$

a)
$$S = AC + ABD + BCD + ABD$$

b)
$$S = \overline{ABCDE} + \overline{ACDE} + \overline{ACDE} + \overline{ACDE} + \overline{BCD} / \overline{BDE}$$

c)
$$S = (C + \overline{D})(B + \overline{C} + \overline{D})(A + B + \overline{D})(A + B + C + \overline{E})(A + \overline{C} + \overline{D} + \overline{E})$$

CIRCUITOS COMBINACIONALES. Respuestas.

Con salidas activas a nivel alto.

$$\begin{array}{c} \text{Con salidas activas a nivel alto.} \\ \text{Si} = M_2 \ M_3 \ M_4 + M_1 \ M_2 \ M_3 + M_1 \ M_2 \ M_4 + M_1 \ M_3 \ M_4 \\ \hline No = \overline{M_2} \ \overline{M_3} \ \overline{M_4} + \overline{M_1} \ \overline{M_2} \ \overline{M_3} + \overline{M_1} \ \overline{M_2} \ \overline{M_4} + \overline{M_1} \ \overline{M_3} \ \overline{M_4} \end{array} \right\} \\ \begin{array}{c} \text{Emp} = \overline{Si + No} \\ \text{(cuando no sea ni Si ni No)} \end{array}$$

3.

4.

2.

1.

Salida activa alta. (fuera de rango)

$$S = \overline{I}_1 (\overline{I}_2 + \overline{I}_3 + \overline{I}_4)$$

Salida activa alta. (fuera de rango)

$$S = (I_2 + I_3)(\overline{I_2} + \overline{I_3} + \overline{I_4})$$

$$A_1 A_0 = B_1 B_0$$
? $S = (A_0 X - NOR B_0) (A_1 X - NOR B_1)$

26.

^o 5.

$$A_1 A_0 > B_1 B_0$$
?

$$S = A_1 \overline{B}_1 + A_0 \overline{B}_1 \overline{B}_0 + A_1 A_0 \overline{B}_0$$

7.

$$\mathbf{M} = \mathbf{A}_3 \, \mathbf{B}_3$$

$$I = A_3 X - NOR B_3$$

Seguir comparando si se cumple la igualdad.

$$\label{eq:continuous} {}_{\mbox{\dot{c}}} A_1 \ A_0 * B_1 B_0 \ ? \\ b_3 = A_1 \ A_0 \ B_1 \ B_0$$

a 8.

$$b_0 = A_0 B_0$$

$$b_2 = A_1 B_1 B_0 + A_1 A_0 B_1$$

 $b_2 = A_1 \ B_1 \ \overline{B_0} + A_1 \ \overline{A_0} \ B_1 \qquad b_1 = \overline{A_1} \ A_0 \ B_1 + A_0 \ B_1 \ \overline{B_0} + A_1 \ \overline{B_1} \ B_0 + A_1 \ \overline{A_0} \ B_0$

9.

10.

$$S = \overline{D} \quad \overline{C X - OR B X - OR A} + \overline{D} \overline{C} \overline{B} A$$

11.

$$D = \overline{I_8} \ \overline{I_9} \qquad \qquad C = \overline{I_4} \ \overline{I_5} \ \overline{I_6} \ \overline{I_7} \qquad \qquad B = \overline{I_2} \ \overline{I_3} \ \overline{I_6} \ \overline{I_7} \qquad \qquad A = \overline{I_1} \ \overline{I_3} \ \overline{I_5} \ \overline{I_7} \ \overline{I_7}$$

$$S_0 = \overline{\overline{I_2} \ \overline{I_1} \ I_0}$$

$$\mathbf{S}_1 = \overline{\overline{\mathbf{I}}_2 \ \overline{\mathbf{I}}_1 \ \mathbf{I}_0}$$

$$S_2 = \overline{I_2} \overline{I_1} \overline{I_0}$$

$$S_3 = \overline{I_2 I_1 I_0}$$

$$S_4 = \overline{I_2} \overline{I_1} \overline{I_0} \qquad \qquad S_5 = \overline{I_2} \overline{I_1} \overline{I_0}$$

$$S_5 = I_2 I_1 I_0$$

$$S_6 = I_2 I_1 \overline{I_0}$$

$$S_7 = \overline{I_2 I_1 I_0}$$

13.

$$O_0 = D + C + B + A$$

$$O_1 = D + C + B + A$$

$$O_2 = C + B + A$$

$$O_3 = C + B + A$$

$$O_4 = C + B + A$$

$$O_5 = \overline{C} + B + \overline{A}$$

$$O_6 = \overline{C} + \overline{B} + A$$

$$O_7 = \overline{C} + \overline{B} + \overline{A}$$

$$O_8 = \overline{D} + A$$
 $O_9 = \overline{D} + \overline{A}$

$$p = D + A$$

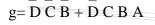
ABC
$$\longrightarrow$$
 $G_2 G_1 G_0$ $G_0 = B \textbf{X-OR} C$ $G_1 = A \textbf{X-OR} B$ $G_2 = A$

$$G_0 = B X - OR C$$

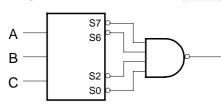
$$G_1 = A X - OR B$$

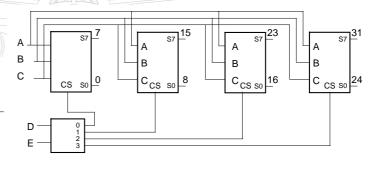
$$f_2 = A$$

15.

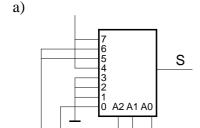

14.

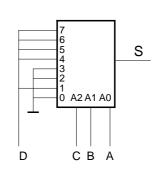
$$a = \overline{D} \overline{C} \overline{B} A + \overline{D} \overline{C} \overline{B} \overline{A}$$


$$b = C B A + C B A + D C + D B$$
 $c = D C + D B + C B A$

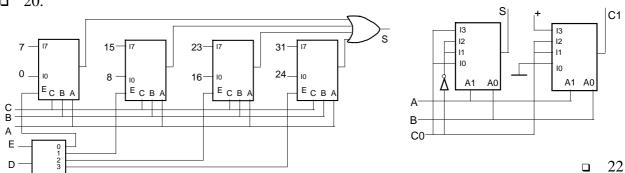

$$c = D C + D B + C B A$$

$$d = \overline{D} \overline{C} \overline{B} A + \overline{D} \overline{C} \overline{B} \overline{A} + \overline{D} \overline{C} B A \qquad e = \overline{D} A + \overline{D} \overline{C} \overline{B} + \overline{C} \overline{B} A \qquad f = \overline{D} \overline{C} A + \overline{D} \overline{C} B + \overline{D} B A$$


16


17.

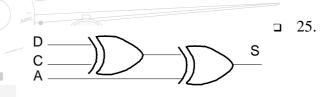
18.


СВА

b)

$$S = \overset{-}{C} \overset{-}{B} \overset{-}{A} I_0 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_1 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_2 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_3 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_4 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_5 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_6 + \overset{-}{C} \overset{-}{B} \overset{-}{A} I_7 + \overset{-}{A} I_7$$

0.



.

$$D' = D + C A + C B$$
 $C' = C \overline{B} \overline{A} + \overline{C} A + \overline{C} B$ $B' = A X-NOR B$ $A' = \overline{A}$

4.

$$O_7 = A B C$$
; $O_6 = A B \overline{C}$; $O_5 = A \overline{B} C$; $O_4 = A \overline{B} \overline{C}$; $O_3 = \overline{A} B C$; $O_2 = \overline{A} B \overline{C}$; $O_1 = \overline{A} \overline{B} C$; $O_0 = \overline{A} \overline{B} \overline{C}$;

.

$$S = \overline{D} C \overline{B} \overline{A} + \overline{D} \overline{C} B \overline{A} + \overline{D} \overline{C} B \overline{A} + \overline{D} \overline{C} B \overline{A}$$

$$S = \overline{C} B \overline{A} \overline{D} \overline{C} \overline{B} \overline{A} \overline{D} \overline{C} \overline{A}$$

7

FLIP-FLOPS. Respuestas.

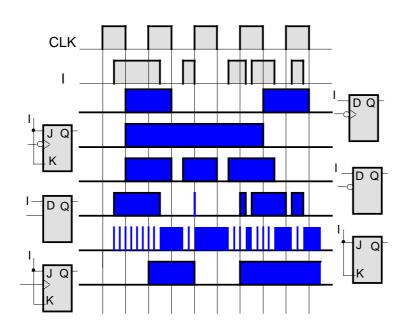
R	S	\mathbf{Q}_{T}	$Q_{T+\Delta t}$	$\overline{Q_{T+\Delta t}}$
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

R	S	$Q_{T+\Delta t}$	$Q_{T+\Delta t}$
0	0	1	1
0	1	0	1
1	0	1	0
1	1	Q_{T}	$\overline{Q_{T}}$
1	1	Q_{T}	$\overline{\mathbf{Q}_{\mathrm{T}}}$

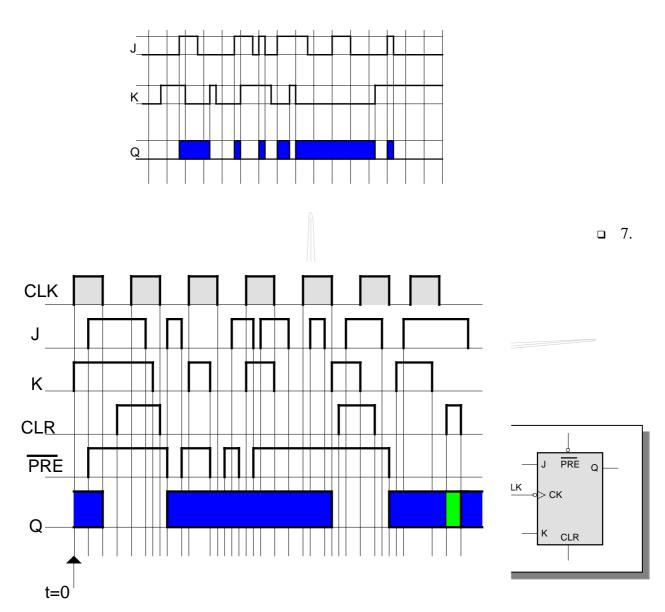
R	S	$Q_T \qquad \qquad Q_{T+\;\Delta t}$
X	1	0
1	0	0 1
0	1	1> 0
1	X	1> 1

2.

1.

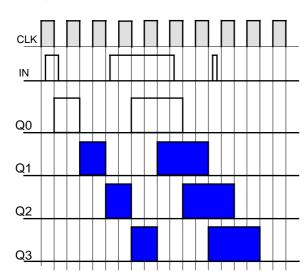

Nivel activo diferente en las entradas.

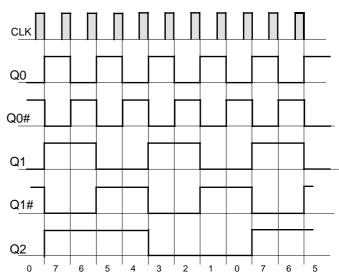
3.


Va a depender del t_{pd} de las puertas.

4.

Las asíncronas, no dependen del reloj. Dependen únicamente de los valores aplicados en ellas.




a 6.

CIRCUITOS SECUENCIALES. Respuestas.

2.

□ 3.

 $J_3 = \overline{S_0} (S_2 X-NOR S_1)$

$$\mathbf{J}_2 = \mathbf{S}_3 \, \mathbf{S}_0 + \mathbf{S}_1 \, \overline{\mathbf{S}_0}$$

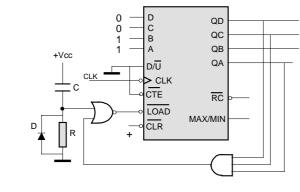
$$J_1 = S_2 + S_0$$

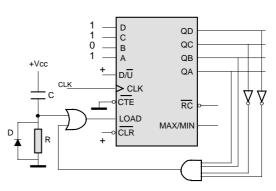
$$J_0 = \overline{S}_3 \overline{S}_2 \overline{S}_1$$

$$K_3 = 1$$

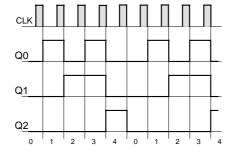
$$\mathbf{K}_2 = \mathbf{S}_1 \, \mathbf{X} \cdot \mathbf{OR} \, \mathbf{S}_0$$

$$K_1 = 1$$


$$\mathbf{K}_0 = \mathbf{S}_3 \ \mathbf{S}_2 \ \mathbf{S}_1$$


f = 1 MHz

 $J_2 = Q_1$ $J_1 = 1$ $J_0 = C$ $K_2 = Q_1 (C X-NOR Q_0)$ $K_1 = C X-NOR Q_0$

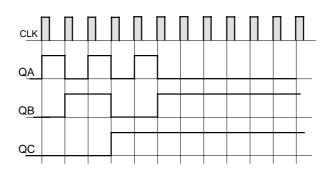

4. $\mathbf{K}_0 = \mathbf{C} \#$

5.

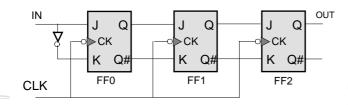
- 7

a 8.

$$J_1 = K_1 = 1$$

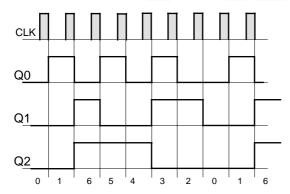

$$J_0 = 1$$

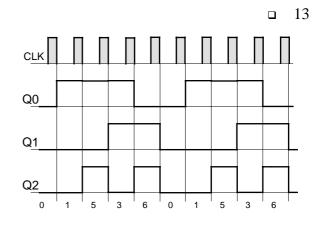
$$J_1 = K_1 = 1 \qquad \quad J_0 = 1 \qquad K_0 = 0 \qquad J_3 = Q_2 \; Q_1 \qquad K_3 = Q_2 \; Q_1 \qquad \quad J_2 = K_2 = Q_1$$


$$K_3 = Q_2 Q$$

$$\mathbf{J}_2 = \mathbf{K}_2 = \mathbf{Q}_1$$

9

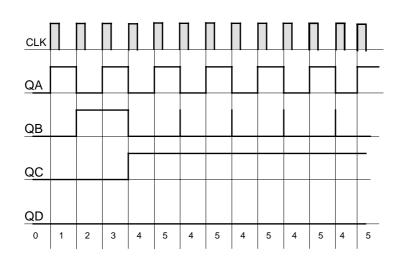

10.



$$J_0 = Q_1 \# \qquad K_0 = Q_1$$

$$I_1 = Q_0$$
 $K_1 = Q_2 X - OR Q_0$ $J_2 = K_2 = Q_1$

12.



En un contador asíncrono todos los FF-s cambian de estado al mismo tiempo	F
Todos los contadores BCD son contadores de décadas	V
Los contadores de anillo y los Jonhson son contadores síncronos	V
Un cero lógico aplicado a la entrada clear de una báscula J-K produce siempre	F
un cero lógico a la salida.	

15.

a)

b) a = c = d = f = g = 0

$$b = e = 1$$

c) display de 7 seg. de ánodo común

d) Se detiene la cuenta hasta que el condensador adquiera

una tensión tal que el valor de voltaje en R sea un cero lógico, con lo que vuelve la cuenta.

e)

16

$$J_2 = Q_1 \ Q_0$$

$$K_2 = Q_0$$

$$J_1 = Q_2 \; Q_0$$

$$\mathbf{K}_1 = \mathbf{Q}_0$$

$$J_0 = K_0 = 1$$

17

$$J_2 = K_2 = \stackrel{-}{M} \stackrel{-}{Q_1} \stackrel{-}{Q_0} + M \; Q_1 \; Q_0 \qquad \quad J_1 = K_1 = \stackrel{-}{M} \stackrel{-}{Q_0} + M \; Q_0$$

$$J_1 = K_1 = \overline{M} \ \overline{Q}_0 + M \ Q_0$$

$$J_0 = K_0 = 1$$

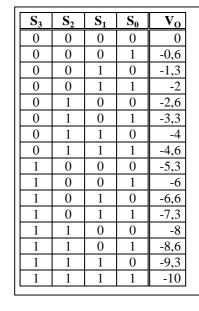
DAC-ADC. Respuestas.

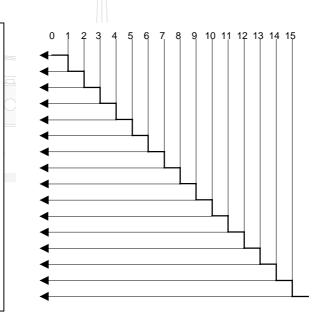
3,46 V

2.

3.

1,343 mV; 0,024%


4.


n=8 bits; res = 31 μA

5.

n = 10 bits; 1257,8 rpm

6.

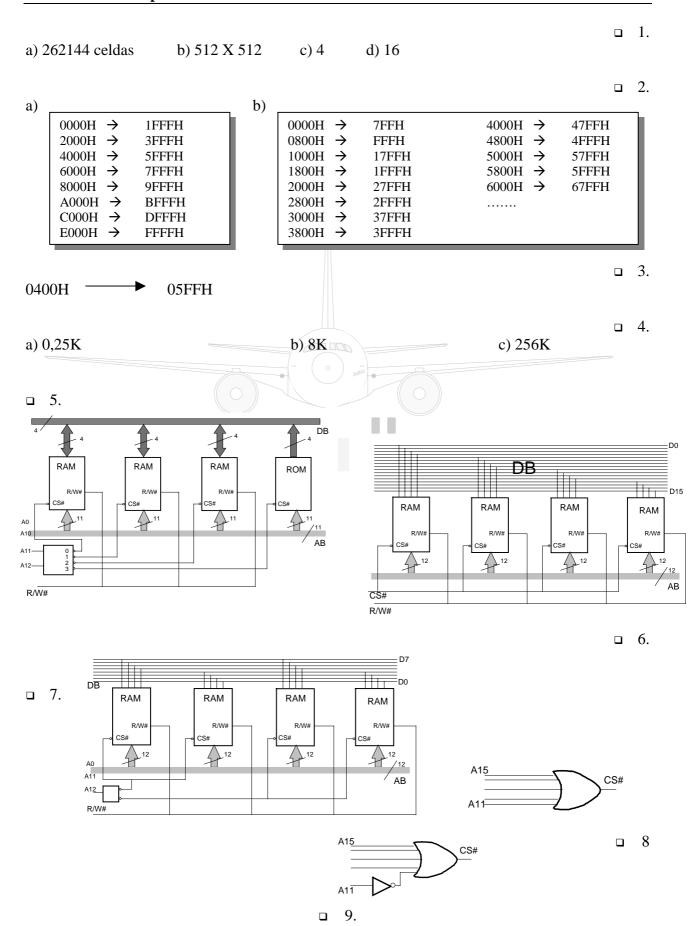
- a) 0,01 V; 0,1%
- b) 9,99 V
- c) 5,93 V

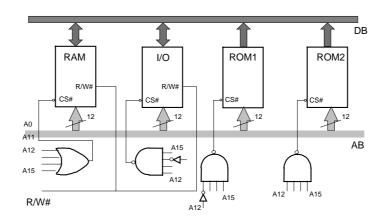
8.

- 7.

a) 67

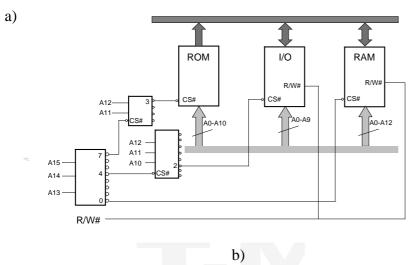
- b) 67 μS
- c) 0,4 %


9.


10100101

10.

 $24 \mu S$


MEMORIAS. Respuestas.

10.

11.

R/W#

12.

ROM: 2K LIBRE: 53K I/O: 1K RAM: 8K

13.

a)

	A15	A14	A13	A12	A11	A10	A9	••••
RAM	0	0	0	X	X	X	X	X
I/O	1	0	0	0	1	0	X	X
ROM	1	1	1	1	1	X	X	X

A14

b)

	A15	A14	A13	A12	A11	A10	A9	• • • • •
RAM	0	0	0	0	0	X	X	X
ROM	1	1	1	1	X	X	X	X

PLD-s. Respuestas.

-	7	
X Y producto		1.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M M M	 1.
0 0 0 0 0 0 0 0		
0 0 1 0 0 0 0 0		
0 1 0 0 0 0 0 0		
0 1 0 1 0 0 0 1		
0 1 1 0 0 0 1 0		
0 1 1 1 0 0 1 1		
1 0 0 0 0 0 0 0		
1 0 0 1 0 0 1 0	8	
1 0 1 0 0 1 0 0		
1 0 1 1 0 1 1 0		
1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 1		
1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0		
1 1 1 1 0 0 1	14 14 14 14	
2 .		
	- (o) D C B A	3
\Box^D \Box^C \Box^B \Box^A	\(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\)	
M M M		
** ** ** ** 1		
** ** ** ** 2	* *	
** ** ** ** ** 3	* * * * *	
	* * ** ** ** <u>L</u> 4) * * * *	
** ** ** ** 5	** ** ** **5	
** ** ** ** 6)	** ** ** **	
** ** ** ** 7	** ** ** ** * * * * * * * * * * * * * *	
* * * 8	** ** ** ** ** ** ** ** ** ** ** ** **	
	** ** ** 10 * * * *	
* 10		
** ** ** **	** ** ** 12 * * *	
* * 12	** ** ** 13 * * * *	
* * 12	** ** ** 14 * * * *	
** ** ** ** 14	** ** ** 15) * * * *	
** ** ** ** 15		
	$\gamma\gamma\gamma\gamma$	
Y Y Y	$ _{O4} _{O3} _{O2} _{O1}$	
$ _{O4} _{O3} _{O2} _{O1}$	01.03.02.01	

4

$$O_1 = \overrightarrow{D} \, \overrightarrow{C} \, \overrightarrow{B} \, \overrightarrow{A} + \overrightarrow{D} \, \overrightarrow{C} \, \overrightarrow{B} \, \overrightarrow$$