
Python and Bioinformatics

Pierre Parutto

September 17, 2016

Contents

1 What Is A Computer ? 3
1.1 What’s inside A Computer ? . 3

1.1.1 Electronics components 3
1.1.2 Information Flow . 5

1.2 The Operating System . 6
1.2.1 Different Operating SystemS 7

2 Programming Languages 8
2.1 Programming Languages . 8

2.1.1 Natural Languages and Programming Languages 8
2.1.1.1 Evolution Of Natural Languages 8
2.1.1.2 Evolution Of The Python Programming Language 9

2.2 Compiled vs Interpreted Languages 10
2.3 Python Language vs Python Software 11
2.4 Using the Python Software . 11

2.4.1 Line By Line Mode . 12
2.4.2 File Mode . 12

3 First Steps In Python 14
3.1 Values and Types . 14

3.1.1 Values . 14
3.1.2 Types . 14
3.1.3 Examples - Values And Types 15

3.2 Expression and Operations . 16
3.2.1 Expression . 16
3.2.2 Logical Operations . 16
3.2.3 Arithmetic Operations . 17
3.2.4 Comparison Operations 18

3.3 Evaluation Of Expressions . 18

4 Variables 20
4.1 Variables . 20

4.1.1 Using Variables . 20
4.1.2 Type associated to variables 21

1

4.1.3 Python Memory . 21
4.1.4 Variable Naming . 22

2

Chapter 1

What Is A Computer ?

Definition 1 A computer is a machine that computes.

The term machine refers to the fact that a computer is made of electronic
components. The term computes refers to a calculation between numbers, nowa-
days computers are capable of very complex computations but at the hardware
level all these computations boil down to a very limited set of operations on
binary (0 or 1) numbers.

This chapter introduces what a computer is and briefly how it works. In or-
der to correctly use and program a computer it is important to understand, at
least very roughly, how it is able to perform all the computations. As for biolog-
ical livings, nowadays computers are the result of a long and wide technological
evolution.

1.1 What’s inside A Computer ?

Modern computer are designed to fulfill the following criteria:

• High Performance;

• Low Cost;

• Strong Reliability;

• Low Power Consumption (since recently).

1.1.1 Electronics components

A picture of the inside of a (my) standard personal computer is presented in
Figure 1.1. The main electronics components present are the following :

3

Figure 1.1: The insides of a classical personal computer.

1. The Central Processing Unit (CPU) is the core of the computer, in charge
of all the computations (except for the display if a graphic card is present);

2. The Random Access Memory (RAM) is a temporary memory used by the
programs to store the data they need. This memory is volatile, all the
content is lost if the power is turned off. It is faster to access than the
ROM memory but has a capacity of ”only” a few gigabytes;

3. The Motherboard is mostly cables and plugs that orchestrates the com-
munications between all the components.

4. A mechanical hard drive connected through a SATA wire. It is a non-
volatile memory (its content remains when you turn off the computer). It
can store a large amount of data, of the order of the terabyte now, it is
slower to access than the RAM.

5. Another hard drive of the Solid State Drive (SSD) type, a flash memory,
faster than the mechanical one but limited in the number of writing op-
erations before being unusable. It can stores in the order of hundreds of
gigabytes.

6. The Graphic Card (GC), a piece of hardware specifically created to make
computations related to the display. It is composed of many processing

4

Monitor

Printer
Network
...

Keyboard
Mouse
...

Plug

Information Flow
Electric current Inputs

Outputs

1

2

3

4

5

6

7

Figure 1.2: Electric current and information flow in-between the principal com-
ponents of a computer and with the exterior. Component labels are as in 1.1.

units that allow to make many computations in parallel.Mostly used for
displaying videos and rendering video games.

7. The power supply allows to provide electrical current to all the electronic
components of the computer.

Among other things on this picture are some fans and the computer case
that are needed to cool the components. This is a task of prime concern as
they generate a lot of heat during their functioning mainly due to joule’s effect.
Finally you can also see a lot of cables.

1.1.2 Information Flow

In a computer the information flow respects the cyclic route presented in Fig-
ure 1.2:

1. A piece of information arrives to the motherboard through an external
source : the mouse or keyboard, the network, . . .;

2. It is processed by the CPU that may need to fetch items in memory either
from the RAM or any disk;

3. Once processed, the processed piece of information can be stored to a disk,
displayed to the monitor through the graphics card, sent to another device
through network via the motherboard, . . .

4. Go back to step 1;

This cycle goes on forever while your computer is on.

5

Remark

Most of the time, the CPU does not read directly to the hard drives. When
a piece of information from a HD is needed, it is first loaded into the RAM,
and then accessed from there by the CPU.

1.2 The Operating System

The Operating System (OS) is a HUGE piece of software that starts a little
bit after the computer is turned on (before that things are handled by the
BIOS) and stops when you turn off the computer. It is the bridge between the
hardware (electronics components) and the softwares. Its main tasks along with
the different kind of interactions between the different actors are presented in
Figure 1.3. It is composed of the following modules:

• Drivers: Allows programs to access to the hardware (graphics card, hard
drive, . . .).

• Program Manager: Run all the needed programs, ensure a fair share of
CPU usage and other resources (called scheduling).

• Window Manager: Provide a nice interface to the user and allow program
to create windows of their own.

• File system: Organize the files and directories from the users.

6

Hardware

User

User
Softwares

File System ...Window
Manager

Software
ManagerDrivers

OS

SoftwareUser

Software Software
Software Hardware

Figure 1.3: Typical components of an Operating System (OS) and their inter-
actions with users, softwares and hardwares. Internal interactions in the OS are
not represented.

1.2.1 Different Operating SystemS

There exists many different families of operating systems, the three most famous
being Microsoft Windows, Apple MacOs and GNU Linux.

Windows is the oustider here, possessing its totaly own code whereas MacOs
and Linux share some common code base. Therefore MacOs and Linux OS are
in some way pretty similar and its easier to go from one to the other than with
Windows. The main difference in MacOs being mostly located in the window
manager.

That being said, differences between OS can concern any of their modules
: the filesystem, the drivers, Programs interacts mostly with the operating
system and thus are very exposed to different behaviors between OS. It is thus
safer to consider by default that some software program for one OS will not
work on another.

Remark

A simple example of different behaviors between OS lies in the different
ways of for example writing in a file on the HD between windows and
linux.

7

Chapter 2

Programming Languages

2.1 Programming Languages

Definition 2 A programming language is a language designed to give or-
ders (to program) a machine.

This section quickly presents computer languages in the light of natural
languages, then the two big families of programming languages: compiled and
interpreted languages and finally gives a more specific overview of the Python
language.

2.1.1 Natural Languages and Programming Languages

Definition 3 A language is a set of words (representing ideas) and a set
of rules (called grammar).

Natural and programming languages are very similar except that the last
one is made to give order to machines.

2.1.1.1 Evolution Of Natural Languages

Natural languages evolve through time, as an example compare this sonnet 2
by William Shakespeare (1564-1616):

When forty winters shall beseige thy brow, And dig deep trenches
in thy beauty’s field, Thy youth’s proud livery, so gazed on now, Will
be a tatter’d weed, of small worth held: Then being ask’d where all
thy beauty lies, 5 Where all the treasure of thy lusty days, To say,
within thine own deep-sunken eyes, Were an all-eating shame and
thriftless praise. How much more praise deserved thy beauty’s use,
If thou couldst answer ’This fair child of mine 10 Shall sum myg
count and make my old excuse,’ Proving his beauty by succession

8

Figure 2.1: Timeline of Python versions, red dots correspond to obsolete versions
(from http://www.mclibre.org/)

thine! This were to be new made when thou art old, And see thy
blood warm when thou feel’st it cold.

To this extract from The Hichhiker’s Guide to the Galaxy by Douglas Adams
(1952-2001):

The house stood on a slight rise just on the edge of the village.
It stood on its own and looked over a broad spread of West Country
farmland. Not a remarkable house by any means - it was about
thirty years old, squattish, squarish, made of brick, and had four
windows set in the front of a size and proportion which more or less
exactly failed to please the eye.

As we can clearly see from these text, the english language from 500 years
ago is alike but not the same as the one written nowadays.

2.1.1.2 Evolution Of The Python Programming Language

Python was created by Guido Van Rossum in 1989 at the Centrum voor Wiskunde
en Informatica in Amsterdam. It is an open source language: all the char-
acteristics of the language are available freely online. It is also a community
driven language, as Python evolves following the propositions of the community.

As for natural languages, the Python language evolved a lot throughout
these last 25 years. Figure 2.1 presents the different versions of Python released
since its creation.

9

http://www.mclibre.org/
https://www.python.org/

Interpreted Language

Interpreter

Operating
System

Operating
System

Executable File

Compiler

Code File(s)

Result Result

User File Software

Operating
System

Executable File

Result

Other (Similar) Machine
Interpreter

Operating
System

Code File(s)

Result

Other Machine

Compiled Language

Figure 2.2: Difference between interpreted and compiled languages.

Warning

In this class we will use the versions 3.4 of Python.

2.2 Compiled vs Interpreted Languages

In the world of programming languages, there exist two big families: compiled vs
interpreted languages. The difference between the two lies in how they produce
code understandable by the machine:

• A compiled language uses a compiler software to translate code files into
an executable file that can be directly run by the operating system. The
process of running code files through a compiler is called compilation. The
executable file obtained can then be run independently of the compiler on
the computer or any computer with similar OS and CPU.

• An interpreted language uses an interpreter software that both translate
and run code files at once. The process of interpreting a code file is called
interpretation. No executable file is produce, the code is simply translated
and ran right after. If you want to run such code file on a machine it needs
to have the interpreter software installed on it.

The Figure 2.2 summarizes the differences between the two families of lan-
guages.

The advantages and downsides of of each family are:

• Compiled languages:

10

+ Fast, the created software is built for the machine;

+ Can distribute directly the compiled file to other similar (same type
of CPU and OS) computers;

- Cannot be distributed to machine with different OS or CPU.

• Interpreted languages:

+ Very easy to share to any type of computer (it just needs to have an
interpreter installed.

- Slower because the interpreter translates the instruction and then
run them.

Python is an interpreted language which means that you need to have the
Python interpreter on your machine in order to be able to run Python code.

2.3 Python Language vs Python Software

The word Python is used to refer to two specific notions:

• The Python language: a programming language (as for spoken/writ-
ten languages) is only a set of rules. The Python language possesses a
grammar that can be found here, these rules must be followed in order to
do a valid Python ”sentence”. In addition to the grammar, Python also
comes with a set of known words called builtins that can be found here.

• The Python software Python is also the name of the software that is
capable of translating Python (the language) codes into orders understand-
able by your CPU. There exist different software capable of interpreting
Python codes such as Jython or pypy.

Warning

In the remaining of the class, when I say Python, I wont usually specify
whether it is the language or the software I am speaking of. It should be
clear from the context.

2.4 Using the Python Software

The Python Software can be used in two different ways: line by line (like a
dialog) or using code files (like a monologue). To write codes in Python we will
use the Spyder Integrated Development Environment (IDE), that allows us to
write and execute code in the same software.

Remark

11

http://docs.python.org/3.5/reference/grammar.html
https://docs.python.org/3/library/functions.html
http://www.jython.org/
http://pypy.org/

There exist many different IDEs to write Python code. You can also just
use any text editor and then use the Python interpreter directly on files.

2.4.1 Line By Line Mode

The line by line mode provides a direct access to the Python interpreter in which
you can type a command and directly gets the result. In this mode, Python
displays three chevrons >>> at the beginning of the line to indicate that it awaits
for a command. Once a command is provided Python (the interpreter) evaluate
it and display the result (if any) on the following line. For example:

>>> 5

5

>>> 5 + 1

6

I will use this mode extensively in the class as it allows to quickly present the
behavior of some Python command. On the bottom right panel of Figure 2.3
you can see the Python interpreter inside the Spyder software.

2.4.2 File Mode

In this mode, you provide Python directly with one (or multiple) Python code
file(s) and the interpreter evaluate them. A code file is simply an ensemble of
python commands with one command by line. On the left panel of Figure 2.3 you
can see the python code file named temp.py opened inside the Spyder software.
To interpret this file in Python one needs to click on the green triangle, in red
on the top of the picture.

Remark

To interpret a file Spyder uses Python interpreter by using the command
runfile that makes Python interpret a code file.

12

Code File

Filename
Execute File

Interpreter

Other Information

Figure 2.3: The Spyder development Environment with its principal functions.

13

Chapter 3

First Steps In Python

From now on we will start programming, basically it consists in manipulating
values. This simple goal hides many concepts that we will define throughout
the class. We will start first by defining what is a value and its associated type;
We will then see the expressions obtained by using the logical, arithmetic or
comparison operations on values; Finally we will define what a variable is.

3.1 Values and Types

3.1.1 Values

Definition 4 A value is a piece of information provided to the program.

Values can be acquired in different ways:

• Directly provided by the programmer in the code;

• Provided by the user when using the program;

• Read from another source of information (file, network, . . .).

3.1.2 Types

In the first class we have seen that from the point of view of the CPU everything
is only 0 and 1, hence the interpretation of a value entirely depend on the
meaning it was given.

Definition 5 The type of a value provides the information of how this
value should be interpreted.

The basic types used in programming are the following:

• Boolean (bool): represent the values True and False;

14

• Integer (int): represent a positive or negative discrete number (∈ Z);

• Floating point number (float): represent a decimal number (∈ D);

• Character (char): represent an alphanumeric character (a-z, A-Z, 0-9,
punctuation).

Warning

• In Python the values of Boolean type have a capital letter as their
first characters: True and False.

• In programming the capital characters are distinguished from the
small ones: "A" is different than "a".

Remark

• Python follows the American notation for floating point: you must
use a dot . to separate the integer part from the decimal one: 5.4534.

• Actually in Python characters alone does not exist, instead python
provides the type string (of characters). To simulate a character,
we will at the beginning only work with strings of length 1.

To know the type of a variable, Python provides the function type.

3.1.3 Examples - Values And Types

In the following I enter some values inside the interpreter and I look at some
types.

>>> 5

5

>>> "a"

a

>>> 5.5

5.5

>>> type(3)

<class ’int’>

>>> type(-3)

<class ’int’>

>>> type(-3.0)

<class ’float’>

>>> type("-3.0")

<class ’str’>

>>> type(True)

<class ’bool’>

15

Warning

In python3, the type is called ”class”, do not let the term confuse you,
a class is a special kind type. We will see more about classes during the
second semester.

3.2 Expression and Operations

One can obtain a new value by making operations on values. Think of the
addition:

>>> 5 + 2

7

In this code I provided two values: 5 and 2 and I created a third one (I did
not enter it) 7.

3.2.1 Expression

Definition 6 An expression is a piece of Python code that creates a value.

An expression is thus either:

• A value;

• An operation between one or more expression(s);

We will see the basic type of operations that can be done in Python.

3.2.2 Logical Operations

These operations work on Boolean values, and are similar to the one we have
seen in the first class. Let a and b be to Booleans, the most common logical
operations are:

16

Name Symbol Truth Table

Negation not a

a not a

True False
False True

Conjunction a and b

a b a or b

True True True
True False True
False True True
False False False

Disjunction a or b

a b a and b

True True True
True False False
False True False
False False False

3.2.3 Arithmetic Operations

These operations work on integer and floating points values, they are the natural
operations on numbers. Let a and b be two integers or floats, the common
arithmetic operations are:

Name Symbol

Addition a + b

Subtraction a - b

Division a / b

Multiplication a * b

Exponentiation(i.e. ab) a ** b

Integer division a // b

Modulus a % b

The first five operations are known, let us focus on the last two that you
might not know:

• The integer division also called Euclidean division, is a division between
integer which result is also an integer.

• The modulus a % b provides the remainder in the Euclidean division of a
by b.

Remark

The integer division and modulus are linked by the following relation:

a = b× q + r

Where a, b, q, r ∈ N, a is called the dividend, b the divisor, q is the

17

quotient and r the remainder.

In this expression q = a//b and r = a % b.

3.2.4 Comparison Operations

Finally, the following operations allow to compare two values, the comparison
operations create a value of Boolean type. Let a and b be two values:

Name Symbol True if

Equality a == b a and b have the same value
Difference a != b a and b have different values
Less than a < b a is less than b

Greater than a > b a is greater than b

Less than or equal a <= b a is lesser than or equal to b

Greater than or equal a >= b a is greater than or equal to b

3.3 Evaluation Of Expressions

Definition 7 We call evaluation the action of computing the value repre-
sented by an expression.

Expressions are evaluated from left to right (as we usually do), following
specific priorities between operator. The priorities you know in calculus are
extended to include all the operators we have seen previously and are as follows
from the lowest (evaluated last) to the highest (evaluated first):

Priority Operators

1 or

2 and

3 not,
4 ==, !=, >, <, >=, <=
5 +, -
6 *, /, %, //
7 **

8 ()

Warning

For two operators with the same level of priority, the first come first eval-
uated rule applied. For example:

>>> 4 * 5 % 5

0

18

>>> 4 % 2 * 5

20

In the first expression, 4 * 5 is evaluated first, whereas in the second ex-
pression 4 % 2 is evaluated

Remark

The parentheses are not operators but are used to enforce the evaluation
of the enclosing expression before the others.

19

Chapter 4

Variables

4.1 Variables

Definition 8 A variable is a name associated to a value.

Assignment Operator To define a new variable, Python provides the assign-
ment operator = that works as: variableName = value. With VariableName

any valid variable name you want. The variableName is also called the Left
Hand Side (LHS) and the value the right hand side (RHS) of the assignment
operation.

Example The following cases are all valid variable assignments:

>>> a = 5

>>> b = 5 + 7.0

>>> c = b

>>> d = a + 2

>>> e = a + d

>>> f = True

Remark

In the example, Python provided no answers to the commands, this is
because an assignment does not evaluate to any value.

4.1.1 Using Variables

To use a variable in an expression, just put its name and it will be replace by
its associated value.

20

Example The following cases use variables in computations:

>>> a = 5

>>> b = a + 5

>>> a + b * 2

25

>>> a = a + 1

>>> a

26

4.1.2 Type associated to variables

Definition 9 The type of a variable is the type of the value associated to
it.

If the value associated to the variable changes to another type then the type
of the variable also changes.

4.1.3 Python Memory

The Python interpreter, like a human being, possesses a memory. At the begin-
ning of a program, this memory is filled with some common names corresponding
to keywords and built-ins:

• Keywords are a small specific ensemble of names reserved by Python, such
as for, while, These are names needed by the Python interpreter to
be able to correctly interpret Python codes. Keyword names cannot
be redefined.

• Built-ins are an ensemble of variables and functions that are defined at the
beginning of all Python programs. Most of these built-ins contain very
commonly used values and functions. built-in names can be redefined.
A list of all the built-in functions can be found here while the built-in
variable can be found here.

When encountering an assignment Python distinguishes two cases:

• The variable name is not known to Python: then Python evaluates
the RHS, add the LHS to its memory and associate to it the value of the
RHS.

• The variable name is already known to Python: then Python eval-
uates the RHS and replace the current value by this new one.

Warning

The RHS is evaluated before associating the value to the LHS name. Hence
one can write code like:

21

https://docs.python.org/3.4/library/functions.html
https://docs.python.org/3.4/library/constants.html

>>> a = 5

>>> a = a + 1

>>> a

6

Here, on line 2, Python evaluates the RHS using the current value of a
which is 5 and then assigns the result of the expression to a. Note however
that a needs to be declared, hence the following does not work:

>>> a = a + 1

NameError: name ’a’ is not defined

Warning

When using variables, there is one simple and natural rule to respect: do
not use variable names that you did not define earlier in the
program.

Remark

There exists the keyword del which works as: del nameVariable. It
deletes (makes Python forget) the variable nameVariable from Python’s
memory.

4.1.4 Variable Naming

The following names are the keyword reserved by Python, you cannot have
variables with these names:

’and’, ’as’, ’assert’, ’break’, ’class’, ’continue’, ’def’,

’del’, ’elif’, ’else’, ’except’, ’exec’, ’finally’, ’for’,

’from’, ’global’, ’if’, ’import’, ’in’, ’is’, ’lambda’, ’not’,

’or’, ’pass’, ’print’, ’raise’, ’return’, ’try’, ’while’,

’with’, ’yield’

Except for these names, variable names:

• Can only contain alphanumeric characters (letter + digit) and the char-
acter _ (ex: a, zzZzZz, A223, a_b);

• CANNOT start with a number (ex: 3a, 3A3, 3).

Warning

Except for the previous conditions, you are free to chose any variable name
you want. It is however a good practice to name variables depending on

22

what they represent. I strongly advise you to do that if you want to keep
your programs readable.

23

	What Is A Computer ?
	What's inside A Computer ?
	Electronics components
	Information Flow

	The Operating System
	Different Operating SystemS

	Programming Languages
	Programming Languages
	Natural Languages and Programming Languages
	Evolution Of Natural Languages
	Evolution Of The Python Programming Language

	Compiled vs Interpreted Languages
	Python Language vs Python Software
	Using the Python Software
	Line By Line Mode
	File Mode

	First Steps In Python
	Values and Types
	Values
	Types
	Examples - Values And Types

	Expression and Operations
	Expression
	Logical Operations
	Arithmetic Operations
	Comparison Operations

	Evaluation Of Expressions

	Variables
	Variables
	Using Variables
	Type associated to variables
	Python Memory
	Variable Naming

