Automatización

(Cód. 600013)

Presentación - Introducción

Escuela Politécnica Superior UNIVERSIDAD DE ALCALÁ

Índice

Presentación

2 Introducción a la automatización

3 Ejercicios

Profesores

Francisco M. Márquez

francisco.marquez@uah.es

DE332

918856618

918856641

F. Antonio Jurado

antonio.jurado@uah.es

Sala E₃₃

918856624

918856641

Contenidos y evaluación

Contenidos

Bloque temático	Horas de clase		
Introducción a la automatización	2 T		
Automatismos eléctricos	6 T + 6 P (Lab. EL8)		
Automatismos neumáticos	6 T + 6 P (Lab. EL8)		
Autómatas programables	12 T + 12 P (Lab. EL8)		
Exámenes parciales	3		

Evaluación

- 1^a prueba parcial \rightarrow 4 puntos.
- 2^{a} prueba parcial \rightarrow 4 puntos.
- Prueba de laboratorio \rightarrow 2 puntos.

Bibliografía

Presentación

- Diseño básico de automatismos eléctricos. Pedro Ubieto Artur y Pedro Ibañez Carabantes, Paraninfo, Madrid 1999.
- Neumática. Antonio Serrano Nicolás, Paraninfo, Madrid 1996.
- Autómatas programables. Fundamento, manejo, instalación y prácticas. Alejandro Porras Criado y Antonio Plácido Montanero Molina, McGraw-Hill, Madrid 1990.
- IEC 61131-3: Programming Industrial Automation Systems. Karl-Heinz John y Michael Tiegelkamp, Springer, Heidelberg 2010.

Índice

Presentación

Introducción a la automatización

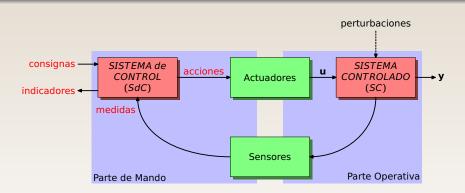
3 Ejercicios

Algunas definiciones

Sistema de control

Conjunto de elementos que gobiernan el comportamiento de otro sistema —denominado sistema controlado o proceso— de forma que se cumplan unos objetivos determinados.

Automatización


Tecnología que tiene como objetivo la sustitución, en los procesos industriales, de los operadores humanos por sistemas de control.

Ejemplo

- Servomecanismos.
- Sistemas de control de los medios de transporte.
- Sistemas de control de fabricación (CIM control integrated manufacturing).
- Control de plantas químicas.

Contexto de un sistema de control

- Las consignas son entradas procedentes del operador y los indicadores son salidas dirigidas al operador.
- Las medidas son datos de entrada al SdC. En función de esas medidas el SdC tomará las acciones pertinentes para gobernar el sistema controlado (SC).

Modelado de sistemas

Para diseñar un SdC se utilizan modelos del SC que permiten predecir su comportamiento y corregirlo en función de los objetivos de control.

modelo.

(Del it. modello).

4. m. Esquema teórico, generalmente en forma matemática, de un sistema o de una realidad compleja [...] que se elabora para facilitar su comprensión y el estudio de su comportamiento.

[DRAE www.rae.es]

Tipos de modelos

- Estructural. Describe las partes del sistema y la relación entre ellas. (¿cómo es el sistema?)
- Funcional. Describe la función del sistema: sus acciones sobre el entorno y sus reacciones a éste. (¿qué hace el sistema?)
- Procesal. Describe la actividad dinámica interna o proceso de un sistema. (¿cómo lo hace?)

Los conceptos básicos en el modelado procesal son estado y transición entre estados:

- Estado. Información mínima necesaria en un instante dado para predecir la evolución de un sistema.
- Transición. Cambio en el estado de un sistema.
- Proceso. Sucesión de estados y transiciones.
- Función de transición. Determina el estado siguiente en función del estado actual y del estímulo que reciba el sistema.
- Función de salida. Determina la respuesta para el estado actual y el estímulo recibido.
- Variable dinámica. Función que representa el estado, el estímulo (entrada) o la respuesta (salida) de un sistema.

Sistemas continuos

Sus variables dinámicas son funciones continuas en tiempo continuo:

$$\begin{split} x: \mathbb{R} &\to \mathbb{R}^n, n \in \mathbb{N}; \text{ estado } x(t) \\ u: \mathbb{R} &\to \mathbb{R}^m, m \in \mathbb{N}; \text{ entrada } u(t) \\ y: \mathbb{R} &\to \mathbb{R}^r, r \in \mathbb{N}; \text{ salida } y(t) \end{split}$$

Su comportamiento dinámico se modela con ecuaciones diferenciales:

$$\frac{dx}{dt} = f(x, u); \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
$$y = h(x, u); \ h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^r$$
$$x(0) = x_0; \ \text{(estado inicial)}$$

Se estudian en Ingeniería de Control I.

Sistemas discretos

■ La variables dinámicas son funciones continuas en tiempo discreto:

$$x: \mathbb{N} \to \mathbb{R}^n, n \in \mathbb{N}$$
; estado $x^k = x(t)|_{t=kT_s}$
 $u: \mathbb{N} \to \mathbb{R}^m, m \in \mathbb{N}$; entrada $u^k = u(t)|_{t=kT_s}$
 $y: \mathbb{N} \to \mathbb{R}^r, r \in \mathbb{N}$; salida $y^k = y(t)|_{t=kT_s}$

Su comportamiento dinámico se modela con ecuaciones en diferencias:

$$x^{k+1} = f\left(x^k, u^k\right); \ f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
 $y^k = h\left(x^k, u^k\right); \ h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^r$
 $x^0 = x_0; \ \text{(estado inicial)}$

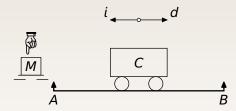
Se estudian en Ingeniería de Control II.

Sistemas de eventos (Automatización)

La variables dinámicas están definidas en conjuntos finitos y en tiempo discreto:

$$x: \mathbb{N} \to X; X = \{q_1, \dots, q_n\}, n \in \mathbb{N} \text{ estado } x(k) = x^k$$
 $u: \mathbb{N} \to U; U = \{U_1, \dots, U_m\}, m \in \mathbb{N} \text{ entrada } u(k) = u^k$ $y: \mathbb{N} \to Y; Y = \{Y_1, \dots, Y_r\}, r \in \mathbb{N} \text{ salida } y(k) = y^k$

Su comportamiento dinámico se modela con una tabla de transición de estados y otra de salidas:


$$x^{k+1} = f\left(x^k, u^k\right); \ f: X \times U \to X$$
$$y^k = h\left(x^k, u^k\right); \ h: X \times U \to Y$$
$$x^0 \in X; \ \text{(estado inicial)}$$

■ La sextupla $\langle X, U, Y, f, h, x^0 \rangle$ se denomina máquina de Mealy finita determinista. Si h no depende de u tenemos una máquina de Moore.

Ej. carro que va y viene

Modelo estructural:

Modelo procesal:

- Al pulsar el botón M, el carro se desplaza hacia la derecha gracias a la acción de un motor mandado por el relé d.
- Al llegar al sensor B, el carro vuelve hacia A por la acción de un motor mandado por el relé i.
- Cuando C llega al sensor A, se para si M no está pulsado; de lo contrario comienza un nuevo ciclo.

Ej. carro que va y viene - Sistema de eventos

• Estados $X = \{q_1, q_2, q_3\}$:

$$q_1=C$$
 en reposo
$$q_2=C \ {
m movi\'endose} \ {
m hacia} \ {
m la} \ {
m derecha}$$
 $q_3=C \ {
m movi\'endose} \ {
m hacia} \ {
m la} \ {
m izqui\'erda}$

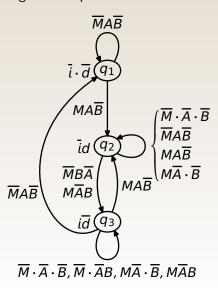
- Entradas $U = \left\{ \overline{M} \cdot \overline{A} \cdot \overline{B}, \overline{M} \cdot \overline{A}B, \overline{M}A\overline{B}, M\overline{A} \cdot \overline{B}, M\overline{A}B, MA\overline{B} \right\}$ Las combinaciones $\overline{M}AB$ y MAB no son entradas válidas.
- Salidas $Y = \{\overline{i} \cdot \overline{d}, i\overline{d}, \overline{i}d\}$. La combinación id no es una salida válida.

Ej. carro que va y viene - Sistema de eventos

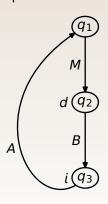
■ Función de transición de estados $f: X \times U \rightarrow X$;

f(x,u)	$\overline{M} \cdot \overline{A} \cdot \overline{B}$	$\overline{M} \cdot \overline{A}B$	$\overline{M}A\overline{B}$	$M\overline{A}\cdot \overline{B}$	$M\overline{A}B$	$MA\overline{B}$
q_1		_	q_1		_	q_2
q_2	q_2	q_3	q_2	q_2	q_3	q_2
q_3	q_3	q_3	q_1	q_3	q_3	q_2

■ Función de salida $h: X \times U \rightarrow Y$;


	h(x,u)	$\overline{M} \cdot \overline{A} \cdot \overline{B}$	$\overline{M} \cdot \overline{A}B$	$\overline{M}A\overline{B}$	$M\overline{A}\cdot\overline{B}$	$M\overline{A}B$	$MA\overline{B}$
	q_1		_	$\overline{i}\cdot \overline{d}$	_	_	$ar{i}d$
Ī	q_2	$\bar{i}d$	$i\overline{d}$	$\bar{i}d$	$\bar{i}d$	$i\overline{d}$	$\bar{i}d$
	q_3	$i\overline{d}$	$i\overline{d}$	$\overline{i}\cdot \overline{d}$	$i\overline{d}$	$i\overline{d}$	$ar{i}d$

■ Estas dos funciones se representan más cómodamente con un digrafo etiquetado.



Ej. carro que va y viene - Digrafo etiquetado

Digrafo completo:

Digrafo simplificado:

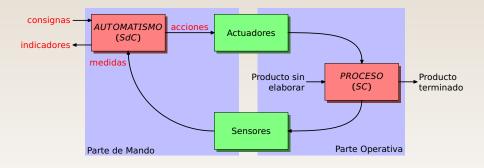
Ej. línea de montaje


Def. Línea de montaje

Conjunto de operaciones secuenciales (proceso) por el cual una serie de componentes son ensamblados para obtener una producto final.

No automatizada (Ford 1950):

Automatizada (BMW - mini):



Ver vídeo

¿Cuántos estados tendrá el modelo del sistema?

Ej. línea de montaje. Automatismo

Def. Automatismo industrial

Sistema que controla un conjunto de máquinas para que realicen de forma autónoma un proceso, liberando así al ser humano de su intervención en el mismo.

Desarrollo de automatismos

Fases:

- Especificaciones funcionales
- Selección de la tecnología
- Diseño de los circuitos de mando y potencia
- Selección de componentes
- 🖪 Montaje y pruebas
- 6 Puesta en marcha

Opciones tecnológicas:

- Mecánica: ruedas dentadas, poleas, levas, cremalleras.
- Eléctrica: interruptores, pulsadores, conmutadores, contactores.
- Hidráulica: cilindros, válvulas.
- Neumática: cilindros, válvulas.
- Electrónica: sistemas informáticos, autómatas programables.

Índice

Presentación

Introducción a la automatización

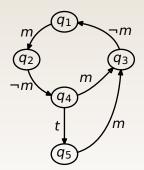
Ejercicios

Ejercicios

Ejercicio 1— Ecuaciones de estado y de salida

Obtenga las ecuaciones de transición entre estados (en lo sucesivo ecuaciones de estado):

$$x^{k+1} = f\left(x^k, u^k\right),\,$$


y las ecuaciones de salida:

$$y^k = h\left(x^k, u^k\right),\,$$

del sistema de eventos correspondiente al ejemplo del carro que va y viene descrito en la página 14.

Ejercicio 2— Ecuaciones de estado

Obtenga, mediante cálculo matricial, las ecuaciones de estado del sistema de eventos modelado por el grafo de la figura:

