ÁLGEBRA LINEAL Y GEOMETRÍA

Hoja 7. Espacio afín III. Aplicaciones afines. Distancia entre variedades lineales.

Aplicaciones afines.

- **1.** Calcula las ecuaciones de la homotecia $f: \mathbb{A}^2 \to \mathbb{A}^2$ tal que f(1,1) = (4,2) y f(-1,0) = (-2,-1), si existe.
- **2.** Calcula las ecuaciones de la afinidad $T: \mathbb{A}^2 \to \mathbb{A}^2$ que cumple T(1,1) = (2,3), T(3,2) = (3,8) y T(2,3) = (1,7), si existe.
- **3.** a) Sean r+1 puntos $\{p_0, p_1, \ldots, p_r\}$ de un espacio afín \mathbb{A} de dimensión n. Llamemos $(x_{kj})_{0 \leq j \leq n}$ a las coordenadas de cada punto p_k en una referencia baricéntrica \mathbb{R} . Demuestra que, si denotamos por $[p_0p_1\cdots p_r]$ la mínima variedad lineal que contiene a los puntos p_0, p_1, \ldots, p_r , entonces se tiene que

$$\dim([p_0 \dots p_r]) + 1 = \operatorname{rg}(M),$$

siendo

$$M = \left(\begin{array}{ccc} x_{00} & \cdots & x_{r0} \\ \vdots & \ddots & \vdots \\ x_{0n} & \cdots & x_{rn} \end{array}\right).$$

- b) Si en el punto anterior tenemos que r = n, comprueba que, para que los n + 1 puntos sean afínmente independientes, es necesario y suficiente que $\det(M) \neq 0$.
- **4.** Comprueba que las aplicaciones afines son, exactamente, aquellas que conservan los baricentros. Es decir, demuestra que, si \mathbb{A}_1 y \mathbb{A}_2 son espacios afines, entonces $f: \mathbb{A}_1 \longrightarrow \mathbb{A}_2$ es una aplicación afín si y sólo si, para cada familia finita de puntos $a_1, \ldots, a_r \in \mathbb{A}_1$ y cada familia de escalares μ_1, \ldots, μ_r tales que $\sum_{j=1}^r \mu_j = 1$, se cumple que

$$f\left(\sum_{j=1}^{r} \mu_j a_j\right) = \sum_{j=1}^{r} \mu_j f(a_j).$$

- **5.** Sean \mathbb{A}_1 y \mathbb{A}_2 espacios afines y sean r+1 puntos (p_0, p_1, \ldots, p_r) afinmente independientes de \mathbb{A}_1 . Demuestra que para cada lista (q_0, q_1, \ldots, q_r) de r+1 puntos de \mathbb{A}_2 , existe una única aplicación afin $f: [p_0p_1\cdots p_r] \longrightarrow \mathbb{A}_2$ tal que $f(p_j) = q_j$ para cada $j = 0, \ldots, r$.
- **6.** En \mathbb{A}^3 , consideramos los puntos

$$A=(1,1,0),\ B=(2,0,2),\ C=(1,2,\alpha),\ D=(3,4,-1),$$

$$A' = (2, 1, 0), B' = (2, 2, 1), C' = (1, 1, 0), D' = (3, 0, 0),$$

con $\alpha \in \mathbb{R}$. Halla los valores de α para los que existe una aplicación afín $f \colon \mathbb{A}^3 \to \mathbb{A}^3$ tal que f(A) = A', f(B) = B', f(C) = C' y f(D) = D'.

- 7. En \mathbb{A}^3 y con respecto a un sistema de referencia ortonormal, halla las ecuaciones de la simetría ortogonal con respecto al plano Π de ecuación x+y+z=1.
- 8. En \mathbb{A}^3 y con respecto a un sistema de referencia ortonormal, halla las ecuaciones de la simetría ortogonal con respecto a la recta de ecuaciones x y = 2, x + z = 3.

Distancia entre variedades lineales.

9. En el espacio euclídeo de dimensión 3, calcula la distancia entre las rectas r y s que vienen dadas en un sistema de referencia ortonormal por las siguientes ecuaciones implícitas:

$$r: \begin{cases} x-y=2\\ x+z=1 \end{cases} \quad \text{y} \quad s: \begin{cases} x+y+z=3\\ x-2z=-1 \end{cases}.$$

Halla un punto $p \in r$ y un punto $q \in s$ tales que d(r,s) = d(p,q). ¿Son únicos los puntos $p \neq q$?

10. En el espacio euclídeo de dimensión 4, calcula la distancia entre las variedades lineales L_1 y L_2 que vienen dadas en un sistema de referencia ortonormal por las siguientes ecuaciones implícitas:

$$L_1: \begin{cases} x+z+t=1 \\ y-z-t=2 \end{cases}$$
 y $L_2: \begin{cases} x+y=1 \\ y-z-3t=3 \end{cases}$.

Halla puntos $p \in L_1$ y $q \in L_2$ tales que $d(L_1, L_2) = d(p, q)$. ¿Son únicos esos puntos p y q?

11. Halla una fórmula, en función de α y β , para calcular la distancia entre las rectas del espacio afín \mathbb{A}^3 con su estructura euclídea usual:

$$r := (1,0,1) + \langle (1, \alpha, 0) \rangle$$
 y $s := (1,1,2) + \langle (1, 1, \beta) \rangle$.

12. En \mathbb{R}^3 , considera el producto escalar cuya matriz en la base $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ es:

$$\left(\begin{array}{ccc} 5 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Calcula la distancia del punto (1,1,-2) al plano que pasa por los puntos de coordenadas cartesianas $a=(1,-1,1),\ b=(1,1,1)$ y c=(2,-1,2) en la referencia $\{O;\mathcal{B}\}$.