Cálculo I Bloque III: Integración impropia y numérica, sucesiones y series.

Rafael Bravo de la Parra

U. D. Matemáticas, Universidad de Alcalá

Cartagena99

Curso 2019-20 PLAMES PENVILOWHARES PH. 1889 45 PALLINER WILLATE AFFE 889 45 FAPR 8

- TEMA 8: Integración numérica e impropia.
- TEMA 9: Sucesiones y Series Numéricas.
- 3 TEMA 10: Series de potencias. Series de Taylor.

ELAMES PENTIL WHARES FOR TOO SELLING FOR THE S

- 1 TEMA 8: Integración numérica e impropia.
 - Integración numérica
 - Integrales impropias
- 2 TEMA 9: Sucesiones y Series Numéricas.
- 3 TEMA 10: Series de potencias. Series de Taylor.

ELAME SPENTIL WHATSAFF! TOBY 45 PALLIVER WILLETS AFFERSOVES FARRS

Integración numérica: Regla del Punto Medio

Cálculo aproximado de $\int_{-\infty}^{\infty} f(x) dx$

$$[a,b]$$
 se divide en n subintervalos de longitud $h=(b-a)/n$,

 $[x_{i-1}, x_i]$ (i = 1, ..., n), con $x_i = a + ih$. Denotamos por $\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i)$, el punto medio del intervalo $[x_{i-1}, x_i]$.

Regla del Punto Medio

$$M_n = hf(\bar{x}_1) + \cdots + hf(\bar{x}_n) = h\sum_{i=1}^n f(\bar{x}_i).$$

Fórmula del error: Suponiendo que $|f''(x)| \le K$ para $x \in [a, b]$:

$$|\int_{a}^{b} f(x) dx - M_n| = E_M \le \frac{K}{2} h^2 (b - a)$$

PALLNER PRIVATE LEPS SONS FARF

Cálculo aproximado de $\int_{a}^{b} f(x) dx$

[a, b] se divide en n subintervalos de longitud h = (b - a)/n, $[x_{i-1}, x_i]$ (i = 1, ..., n), con $x_i = a + ih$.

Regla del Trapecio

$$T_n = \frac{h}{2}(f(x_0) + f(x_1)) + \frac{h}{2}(f(x_1) + f(x_2)) + \dots + \frac{h}{2}(f(x_{n-1}) + f(x_n))$$

$$T_n = \frac{h}{2}(f(a) + f(b)) + h\sum_{i=1}^{n-1} f(x_i)$$

Fórmula del error: Suponiendo que $|f''(x)| \le K$ para $x \in [a, b]$:

Cartagena 99

www.cartagena99.com no se hace responsable de la información contenida en e Rafael Brave de la Parra Contra Brave de la Parra

Cálculo aproximado de $\int_{a}^{b} f(x) dx$

$$[a, b]$$
 se divide en n , **número par**, subintervalos de longitud $h = (b - a)/n$, $[x_{i-1}, x_i]$ $(i = 1, ..., n)$, con $x_i = a + ih$.

Regla de Simpson

Siendo i par se hace la siguiente aproximación de la integral entre x_i y x_{i+2} :

$$\int_{x_i}^{x_{i+2}} f(x) dx \approx \frac{h}{3} (f(x_i) + 4f(x_{i+1}) + f(x_{i+2}))$$

que se basa en la interpolación cuadrática. La fórmula para el intervalo [a, b] es:

$$S_n = \frac{h}{3} \left(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right)$$

Cartagena99

Fórmula del error: Suponiendo que $f^{(4)}(x) \leq K$ Para $f^{(4)}(x)$ Formula del error: Suponiendo que $f^{(4)}(x) \leq K$ Para $f^{(4)$ BALINER RIVATE HER SONE FAR PO

- TEMA 8: Integración numérica e impropia.
 - Integración numérica
 - Integrales impropias

Integrales impropias: intervalos no acotados

Definición (Integrales impropias: $\int_a^\infty f(x) dx$, $\int_{-\infty}^b f(x) dx$ e $\int_{-\infty}^\infty f(x) dx$.)

1 Si f es continua en $[a, \infty)$ entonces si el límite existe (número real):

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx.$$

2 Si f es continua en $(-\infty, b]$ entonces si el límite existe (número real):

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx.$$

Si existen los límites las integrales $\int_a^\infty f(x) dx$ e $\int_{-\infty}^b f(x) dx$ se dicen **convergentes** y en caso contrario divergentes.

Si $\int_a^\infty f(x) dx$ e $\int_{-\infty}^a f(x) dx$ son convergentes para algún $a \in \mathbb{R}$ se define:

Cartagena99

Definición (Integrales impropias: funciones no acotadas.)

1 Sea f continua en [a,b) y $\lim_{x\to b^-} |f(x)| = \infty$. Si existe el límite (número real) se define:

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx.$$

2 Sea f continua en (a,b] y $\lim_{x\to a^+} |f(x)| = \infty$. Si existe el límite (número real) se define:

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx.$$

Si existen los límites la integral se dice **convergente** y en caso contrario **divergente**.

- **3** Sea f tal que $\lim_{x \to c^+} |f(x)| = \infty$ o $\lim_{x \to c^-} |f(x)| = \infty$ para algún $c \in (a, b)$, f es continua

en $[a,c) \cup (c,b]$ e $\int_{-\infty}^{c} f(s) ds$ es $\int_{-\infty}^{b} f(s) ds$ en $\int_{-\infty}^{c} f(s) ds$ en $\int_{-\infty}^{c} f(s) ds$ es $\int_{-\infty}^$ FFRWATE AFFE SONES TAPY

Integrales impropias: Criterio de comparación

Teorema

Sean f y g dos funciones continuas en $[a, \infty)$ tales que

$$0 \le g(x) \le f(x)$$
 para todo $x \in [a, \infty)$

Se tiene entonces:

- Si $\int_{a}^{\infty} f(x) dx$ es convergente entonces $\int_{a}^{\infty} g(x) dx$ es convergente.
- 2 Si $\int_{a}^{\infty} g(x) dx$ es divergente entonces $\int_{a}^{\infty} f(x) dx$ es divergente.

Teoremas análogos se pueden en un siar mara los demás tipos de PRIVATE LESSONS FL

- TEMA 9: Sucesiones y Series Numéricas.

www.cartagena99.com.no se hace responsable de la información contenida en e ento es incitaro Rafael Brave de la Parra

- TEMA 9: Sucesiones y Series Numéricas.
 - Sucesiones
 - Series numéricas.

Definición

Una sucesión es una función cuyo dominio es el conjunto de los enteros positivos.

Notación: La sucesión de **términos** $a_1, a_2, a_3, a_4, \dots, a_n, \dots$ se denota $\{a_n\}$ o $\{a_n\}_{n=1}^{\infty}$.

Definición (Sucesión convergente)

Se dice que una sucesión $\{a_n\}$ converge a un número real L si podemos acercar tanto como queramos los términos a_n a L sin más que coger n suficientemente grande. El número L se denomina **límite** de la sucesión. Si la sucesión $\{a_n\}$ no es **convergente** se dice que es

Límites de sucesiones y operaciones.

Teorema

Supongamos que existen los límites $\lim_{n\to\infty} a_n = L_1$ y $\lim_{n\to\infty} b_n = L_2$. Se tiene entonces

- $\bullet \lim_{n\to\infty} (a_n \pm b_n) = L_1 \pm L_2.$
- $\bullet \lim_{n\to\infty} (a_n \cdot b_n) = L_1 \cdot L_2.$
- $Si L_2 \neq 0$, $\lim_{n \to \infty} \frac{a_n}{b} = \frac{L_1}{L_2}$.

Teorema

Sea $\{a_n\}$ una sucesión y f una función tal que $f(n) = a_n$ para todo n > 1. Si

$$\lim_{\substack{x \to +\infty \\ n \to +\infty}} f(x) = L \qquad entonces \qquad \lim_{\substack{n \to +\infty \\ n \to +\infty}} a_n = L.$$

Cartagena99

FRWYATE AFF SONS FARR

Límites de sucesiones

Definición (Límites infinitos)

La sucesión $\{a_n\}$ diverge $a \infty (-\infty)$ si podemos hacer tan grandes (grandes negativos) como queramos los términos a_n sin más que coger n suficientemente grande.

Notación: $\lim a_n = \infty$ $(-\infty)$.

Teorema

Sea $\{a_n\}$ una sucesión y f una sucesión tal que $f(n) = a_n$ para todo n > 1. Si

$$\lim_{x\to +\infty} f(x) = \infty \; (-\infty) \qquad \text{entonces} \qquad \lim_{n\to +\infty} a_n = \infty \; (-\infty).$$

Teorema

Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones tales que $a_n < b_n$ para todos los n mayores que

aloún índice N



Definición (Sucesión monótona)

Una sucesión $\{a_n\}$ *se denomina*

creciente si $a_n \le a_{n+1}$ para todo $n \ge 1$.

decreciente si $a_n \ge a_{n+1}$ para todo $n \ge 1$.

Una sucesión se denomina **monótona** si es creciente o decreciente.

Definición (Sucesión acotada)

Una sucesión $\{a_n\}$ *se denomina acotada superiormente, acotada* inferiormente y acotada si lo es, respectivamente, el conjunto formado por todos sus términos, $S = \{a_1, a_2, \dots, a_n, \dots\}$.

Cartagena99

- - TEMA 9: Sucesiones y Series Numéricas.
 - Sucesiones
 - Series numéricas.

Series numéricas.

Dada una sucesión $\{a_n\}_{n=1}^{\infty}$ utilizamos la notación $\sum a_n = a_p + a_{p+1} + \cdots + a_q$ $con p \leq q$.

A $\{a_n\}$ le asociamos la sucesión $\{s_n\}$ donde $s_n = \sum a_k = a_1 + a_2 + \cdots + a_n$.

Definición (Serie)

• Para la sucesión $\{s_n\}$ se utiliza también la expresión simbólica $a_1 + a_2 + a_3 + \cdots$ o abreviadamente

$$\sum_{n=1}^{\infty} a_n, \ o \sum a_n,$$

que se denomina serie infinita o simplemente serie.

AMES PENTION HATSAPETES 4FR44ATEAFS88945149190

Series numéricas: convergencia.

Definición (Convergencia de una serie)

Se dice que la serie $\sum a_n$ converge si existe el límite de la sucesión de sus sumas

parciales, $s_n = a_1 + a_2 + \cdots + a_n$, $\lim_{n \to \infty} s_n = s$ y, en este caso, a s se le denomina

suma de la serie y se escribe $\sum a_n = s$.

Si $\{s_n\}$ no tiene un límite finito se dice que la **serie diverge**.

Series geométricas

Una serie geométrica de razón r y primer elemento $a \neq 0$ es de la forma:

$$\sum_{n=0}^{\infty} a r^n = a + a r + a r^2 + \dots + a r^n + \dots$$

Teorema (Convergencia de las series geométricas)

Cartagena 99

AME STERVIC WHARESAPE! NLLVERPRIVATEAFS89V45F4976

Series numéricas: convergencia.

Teorema (Condición necesaria de convergencia de una serie.)

Si la serie $\sum a_n$ es covergente entonces $\lim_{n \to \infty} a_n = 0$.

Corolario

Si lim a_n no existe o es $\neq 0$ entonces la serie $\sum a_n$ es divergente.

$\lim a_n = 0$ no implica la convergencia de la serie

La **serie armónica** $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Teorema

Si las series $\sum a_n y \sum b_n$ son convergentes, con $\sum_{n=1}^{\infty} a_n = A y \sum_{n=1}^{\infty} b_n = B$, y c es un número se tiene que:

Cartagena99

(5PRN)ATSAFS891435495

Series de términos positivos.

La serie $\sum a_n$ se dice de términos positivos si $a_n \ge 0$ para todo $n = 1, 2, \dots$

Teorema (Criterio de la integral)

Sea f(x) una función continua, positiva y decreciente en el intervalo $[1,\infty)$ tal que $a_n = f(n)$ para todo $n \ge 1$.

- Si $\int_{1}^{\infty} f(x)dx$ es convergente entonces $\sum_{n=0}^{\infty} a_n$ es convergente.
- Si $\int_{-\infty}^{\infty} f(x)dx$ es divergente entonces $\sum_{n=0}^{\infty} a_n$ es divergente.

El teorema sigue siendo válido si se cumplen las hipótesis en un intervalo $[\alpha, \infty)$ para algún $\alpha > 1$.

Cartagena 99

LAMAYO'ENVIA WHATSAPP 689 BALLNER RAYATE HERS BONES FAR PO

Series de términos positivos.

Criterio de comparación directa.

Sean $\sum a_n$ y $\sum b_n$ dos series de términos positivos tales que $a_n \le b_n$ para todo

- $n > n_0 \in \mathbb{N}$.
 - **1** Si $\sum_{n=0}^{\infty} b_n$ es convergente entonces $\sum_{n=0}^{\infty} a_n$ es convergente.
 - ② Si $\sum_{n=0}^{\infty} a_n$ es divergente entonces $\sum_{n=0}^{\infty} b_n$ es divergente.

Criterio de comparación en el límite.

Sean $\sum a_n$ y $\sum b_n$ dos series de términos positivos. Si

Cartagena99

4FCPRIVATE 4FFS 80NES FQ BOS

Series de términos positivos.

Teorema (Criterio del cociente)

Sea $\sum a_n$ una serie de términos positivos tal que

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=c.$$

- Sic < 1 entonces la serie converge.
- Si c > 1, o si $c = \infty$, entonces la serie diverge.
- Si c = 1 el criterio no decide.

Teorema (Criterio de la raíz)

Sea $\sum a_n$ una serie de términos positivos tal que

$$\lim_{n\to\infty}\sqrt[n]{a_n}=c.$$

Cartagena 99

MY ATE ALES 869 45 44 17

Una **serie alternada** es aquella cuyos términos son positivos y negativos alternativamente.

Criterio de convergencia.

Sea la serie alternada $\sum_{n=0}^{\infty} (-1)^n a_n$ o $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$, con $a_n \ge 0$, que verifica:

- $a_{n+1} < a_n$ para todo n (la sucesión $\{a_n\}$ es decreciente).
- $\lim_{n\to\infty} a_n = 0 \ (condición \ necesaria \ de \ convergencia).$

entonces la serie converge.

Además si s es la suma de la serie se tiene que el residuo R_n al estimarla a través de s_n verifica que

$$|R_n| = |s - s_n| \le a_{n+1}$$
.

ELAMES TENTILS WHATSAPP! 685 45 ENLINER WHATSAPP! 685 45

Definición (Convergencia absoluta)

La serie $\sum a_n$ se dice que es **absolutamente convergente** si la serie de valores

absolutos $\sum_{n=1}^{\infty} |a_n|$ es convergente.

Definición (Convergencia condicionada)

La serie $\sum a_n$ se dice que es **condicionalmente convergente** si la serie $\sum a_n$ es

convergente pero la serie de valores absolutos $\sum |a_n|$ es divergente.

Cartagena 99

LAMESPENTIC WHATES PH TO B <mark>@NLLVERPRIVATEAFFSBY45F44FS</mark>C

Convergencia absoluta.

Teorema (Criterio del cociente)

Sea $\sum a_n$ una serie de términos no nulos tal que

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=c.$$

- Si c < 1 entonces la serie es absolutamente convergente.
- Si c > 1, o si $c = \infty$, entonces la serie es divergente.
- Si c = 1 el criterio no decide.

Teorema (Criterio de la raíz)

Sea $\sum a_n$ una serie de términos no nulos tal que

$$\lim \sqrt[n]{|a_n|} = c.$$

Cartagena99

FRPWHATEAFFESSIVES F4970

Estrategia para analizar la convergencia/divergencia de la serie $\sum a_n$

- $\bigcup_{n\to\infty} \lim_{n\to\infty} a_n = 0$? Si no es así, la serie es divergente.
- 2 ¿Es una serie de términos positivos (o negativos)? Si lo es:
 - i. ¿Es una serie geométrica o una serie p? Si lo es, se aplica el resultado de convergencia/divergencia correspondiente.
 - ii. ¿Es una serie comparable directamente o en el límite con una geométrica o una serie p? Si lo es, se aplica el criterio correspondiente.
 - iii. ¿Se le puede aplicar el criterio del cociente, de la raiz o de la integral? Si alguno es concluyente se aplica.
- \odot ¿Es una serie alternada? Si lo es y ya se ha comprobado que $\lim a_n = 0$ falta asegurarse que $\{|a_n|\}$ es decreciente a partir de un cierto n_0 para asegurar la convergencia.
- Si la serie no se puede considerar de términos positivos o negativos, es decir, tiene infinitos términos positivos e infinitos negativos, no necesariamente alternados, podemos estudiar su convergencia absoluta a través de los criterios de series de términos positivos (incluidos los criterios del cociente y la raiz para este tipo de convergencia). Si la serie

- TEMA 8: Integración numérica e impropia.
- 2 TEMA 9: Sucesiones y Series Numéricas.
- 3 TEMA 10: Series de potencias. Series de Taylor.

ELAME SPENTIL WHARES PH. 188 45 EARS EARS EARS

- TEMA 8: Integración numérica e impropia
- 2 TEMA 9: Sucesiones y Series Numéricas.
- TEMA 10: Series de potencias. Series de Taylor.
 - Series de potencias
 - Series de Taylor

ELAME SPENTIL WHATSAFF TO THE TOP OF CONTROL OF THE TOP OF THE TOP

Series de potencias.

Una **serie de potencias** tiene la forma:

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

donde x es una variable y las constantes c_n se denominan **coeficientes** de la serie.

De forma más general a la serie $\sum_{n=0}^{\infty} c_n (x-a)^n$ se denomina **serie de potencias en** x-a o **serie de potencias con centro en** a.

Cartagena99

PLAMES PENTILS WHARES FEET TOOF LAST OF THE TOOF LAST OF THE TOOF THE TOOF

Convergencia de las series de potencias.

Teorema (Convergencia de una serie de potencias)

En una serie de potencias, $\sum c_n(x-a)^n$, se da una de las siguientes alternativas de

convergencia:

- **1** La serie sólo converge cuando x = a.
- *La serie converge absolutamente para todo* $x \in \mathbb{R}$.
- Existe un R > 0 tal que la serie
 - Converge absolutamente si |x-a| < R, $x \in (a-R, a+R)$.
 - Diverge si |x-a| > R, $x \in (-\infty, a-R) \cup (a+R, \infty)$.

Al número R se le denominatori de Contra de Co 2KMATEAF5863V4514414

Series de potencias: Diferenciación e Integración.

Teorema (Diferenciación e integración término a término)

Sea la serie de potencias $\sum c_n(x-a)^n$ con radio de convergencia R.

La función $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ es diferenciable y, por tanto, continua e integrable en el

intervalo (a - R, a + R). Además:

siendo los radios de convergencia de ambas series iguales a R.

Corolario

La función f(x) *tiene derivada de orden n para todo* $n \in \mathbb{N}$ *en el intervalo* (a - R, a + R),

siendo

_artagena99

ONLINGPRIVATE AFF SONS FAPS

- TEMA 10: Series de potencias. Series de Taylor.
 - Series de potencias
 - Series de Taylor

Polinomios y Series de Taylor

Definición (Polinomio de Taylor)

Sea f una función derivable n veces en el punto a. Se define su polinomio de Taylor de grado n con centro en a como

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

En el caso de a = 0 se denominan polinomios de Maclaurin.

Definición (Serie de Taylor)

Sea f una función que posee derivada de orden n para todo $n \in \mathbb{N}$ en el punto a. Se define su serie de Taylor con centro en a como

$$Cartagena99$$

Fórmula de Taylor con resto

Definición

Sea $p_n(x)$ el polinomio de Taylor de grado n con centro en a de la función f. Se denomina resto n-ésimo de Taylor con centro en a de la función f a:

$$R_n(x) = f(x) - p_n(x).$$

Teorema (Teorema de Taylor)

Sea f una función n+1 veces derivable en un intervalo abierto I que contiene al punto a.

Entonces para cada $x \in I$ existe un punto c, que depende de x y de n, situado entre a y x tal que:

$$R_n(x) = f(x) - p_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{(n+1)}.$$

o también

Cartagena99

AME SOPENTILS WHARTS SOPEN NLLNERPWYATEAFS89145F49F6

Teorema

Sea f una función que posee derivada de orden n para todo $n \in \mathbb{N}$ en el punto a. Se tiene que

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n \text{ si y solo si } \lim_{n \to \infty} R_n(x) = 0$$

Series de Maclaurin con sus intervalos de convergencia

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
 (-1,1)

$$e^{x} = \sum_{n=1}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$
 $(-\infty, \infty)$

$$\operatorname{sen} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad (-\infty, \infty)$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 $(-\infty, \infty)$

Cartagena99

TALAMES PENTIL WHARES PLIEBY ONLINER RIVATE LESSONS FQRSC

Series de Taylor de funciones definidas mediante series de potencias

Teorema

Sea f una función que admite un desarrollo en serie de potencias en a,

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n para |x-a| < R$$

entonces los coeficientes verifican

$$c_n = \frac{f^{(n)}(a)}{n!}$$

En su intervalo de convergenta ma pritode notembre sa la serie FRWYATSAFS8943FQF