AMPLIACIÓN DE MATEMÁTICAS

Series y Transformadas de Fourier de funciones

- 1.- Calcula el periodo de las funciones sen ax, $\cos ax$ y de e^{iax} .
- 2.- Comprueba que las siguientes familias de funciones son ortogonales en los dominios que se indican:
 - a) $\{\cos nx, \sin nx\}_{n\geq 0}$ en $[-\pi, \pi]$ b) $\{e^{inx}\}_{n\in\mathbb{Z}}$ en $[-\pi, \pi]$
 - c)Las familias $\{\cos nx\}_{n>0}$ y $\{\sin nx\}_{n>1}$ en $[0,\pi]$.
- (*)3.- Sea f una función periódica de periodo T y continua en [0,T], salvo quizás en una cantidad finita de puntos. Prueba que:

$$\int_{-T/2}^{T/2} f(t)dt = \int_{0}^{T} f(t)dt = \int_{\alpha}^{\alpha+T} f(t)dt$$

para todo $\alpha \in \mathbb{R}$.

4.- Sea $f \in C[-\pi, \pi]$ función 2π -periódica y derivable. Prueba que si f es par (e.d. f(-x) =f(x), entonces se puede escribir:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx.$$

Y por $f(x) = \sum_{n=0}^{\infty} b_n \operatorname{sen} nx$, si f es impar (e.d. f(-x) = -f(x)).

5.- Halla las series de Fourier, sobre $[-\pi, \pi]$, de las funciones:

a)
$$f(x) = |x|$$
 b) $f(x) = \cos^3 x$

c)
$$f(x) = e^x$$

$$d) f(x) = |\sin x|$$

e)
$$f(x) = \sin^5 x$$
.

(*)6.- Sea (x_n) una sucesión numérica convergente a un número x. Sea

$$\tau_k = \frac{x_1 + x_2 + \dots + x_k}{k}, \ k \in \mathbb{N},$$

la sucesión de medias Césaro de (x_n) . Prueba que la sucesión (τ_k) converge a x.

- (El Teorema de Fejer asegura que la sucesión de medias Césaro de una serie de Fourier de una función continua 2π -periódica converge uniformemente a dicha función).
 - 7.- Para cada una de las funciones siguientes, en los intervalos que se indican,
- a) Dibuja su gráfica
- b) Justifica la existencia de un desarrollo de Fourier.
- c) Calcula sus coeficientes de Fourier.
- 1) $f(x) = x^2$, $x \in [-\pi, \pi]$ 2) f(x) = |x|, $x \in (-\pi, \pi)$ 3) $f(x) = |\sin x|$, $x \in (-\pi, \pi)$ 4) f(x) = x, $x \in (-\pi, \pi)$ 5) f(x) = x, $x \in (0, 2\pi)$ 6) $f(x) = x^2$, $x \in (0, 2\pi)$
- 7) $f(x) = x(\pi x), x \in [0, \pi]$

8.- Utilizando los resultados del ejercicio anterior deduce: a partir de 1) el valor de

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}, \quad \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}, \quad \sum_{n=1}^{\infty} \frac{1}{n^4}, \quad \sum_{n=1}^{\infty} \frac{1}{(2n+1)^4};$$

a partir de 2, el valor de

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^4};$$

a partir de 7, el valor de

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6}.$$

- 9.- Sean las funciones $f(x)=(x-2)^2, x\in [0,4]$ y $g(x)=|x|^3, x\in [-3,3]$. Encuentra expresiones de estas funciones como series de senos y cosenos.
 - 10.- Encuentra expresiones en serie de senos y cosenos (series de Fourier) de las funciones:

a)
$$f(t) = \begin{cases} -1 & \text{si } -T/2 < t < 0 \\ 1 & \text{si } 0 < t < T/2 \end{cases}$$
, siendo f T -periódica.

b)
$$f(x) = \begin{cases} 1 & \text{si} \quad 0 < x \le 1/2 \\ & & \text{siendo} \quad f \quad 1\text{-peri\'odica.} \\ 0 & \text{si} \quad 1/2 < x \le 1 \end{cases}$$

c)
$$f(x) = \begin{cases} x & \text{si } 0 \le x \le 1 \\ 2 - x & \text{si } 1 < x \le 2 \end{cases}$$
, siendo f 2 – periódica.

- (*)11.- Sea f una función 2π -periódica y tal que su serie de Fourier converja a f(x) puntualmente para todo $x \in [-\pi, \pi]$. Si las sucesiones de coeficientes de Fourier $(a_n)_{n\geq 0}$ y $(b_n)_{n\geq 0}$ verifican que $\sum_{n=0}^{\infty} |a_n| < \infty$ y $\sum_{n=1}^{\infty} |b_n| < \infty$, prueba que la serie de Fourier converge uniformemente a f en $[-\pi, \pi]$.
- (*)12.- Sea $f: \mathbb{R} \to \mathbb{R}$ función par que verifica que $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. Prueba que la transformada de Fourier de la función f es real (e.d. $F[f](\lambda) \in \mathbb{R}$ para todo $\lambda \in \mathbb{R}$). Si f es impar, comprueba que $F[f](\lambda)$ es imaginario puro (e.d. $ReF[f](\lambda) = 0$).

13.-Calcula la transformada de Fourier de las siguientes funciones:

a)
$$\chi_{[-\delta,\delta]}(x) = \begin{cases} 1 & \text{si} \quad x \in [-\delta,\delta] \\ 0 & \text{en otro caso} \end{cases}$$
, b) $f(x) = \cos(\alpha x)\chi_{[-\pi,\pi]}(x)$

c)
$$f(t) = \begin{cases} k & \text{si } -T \le t < 0 \\ -k & \text{si } 0 \le t < T \\ 0 & \text{si } t \notin [-T, T] \end{cases}$$
 d) $f(x) = \begin{cases} x + \pi & \text{si } -\pi \le x \le 0 \\ \pi - x & \text{si } 0 \le x \le \pi \\ 0 & \text{en otro caso} \end{cases}$

14.- Sea la sucesión de funciones (f_n) , con $f_n(x) = \cos(2\pi\alpha x)\chi_{[-\frac{n}{\alpha},\frac{n}{\alpha}]}(x)$, $n \in \mathbb{N}$. Dibuja la gráfica de $F[f_n]$ y después calcula el límite puntual de la sucesión de funciones.

15.- Sea
$$h(t) = \begin{cases} Ae^{-\alpha t} & \text{si } t \ge 0 \\ 0 & \text{si } t < 0 \end{cases}$$
 donde $A \neq \alpha$ son parámetros positivos.

 $\mathbf{15.-} \text{ Sea } h(t) = \begin{cases} Ae^{-\alpha t} & \text{si} \quad t \geq 0 \\ & \text{donde } A \text{ y } \alpha \text{ son parametros positivos.} \end{cases}$ Prueba que $F[h](\lambda) = \frac{A}{\alpha + i\lambda}$ (Filtro de Butterworth). (*) Diseña un circuito **RC** de modo que su función de transferencia sea precisamente $\frac{3}{4+i\lambda}$ (La segunda parte del ejercicico puede dejarse hasta haber visto E.D.O.).

16.- Prueba en cada caso que las funciones f y g son las mismas, aunque se escriban de forma distintas:

a)
$$f(x) = \sin(x)\chi_{[-\pi,\pi]}(x)$$
 y $f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin(s\pi)}{1 - s^2} \sin sx ds$

b)
$$g(x) = \text{sen}(x)\chi_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x)$$
 y $g(x) = \frac{2}{\pi} \int_0^{\infty} \frac{s\cos(\frac{s\pi}{2})}{1-s^2} \text{sen } sxds.$

(*)17.- Sea $f: \mathbb{R} \to \mathbb{R}$ una señal, la cuál filtramos con un filtro ideal paso bajo $\chi_{[-\delta,\delta]}$ ¿Qué es la componente en frecuencia f_{δ} de f acotada en la banda $[-\delta, \delta]$ (**Indicación:** $f_{\delta}(t) = (f * g)(t)$ donde g es el filtro en el dominio del tiempo).

(*)18.- Sea
$$f(t) = e^{-t}\chi_{[0,\infty)}(t)$$
.

- a) Comprueba que $f(at)*f(bt)=\frac{f(at)-f(bt)}{b-a},$ para $a,b\in(0,\infty).$ b) Deduce que f(at)*f(at)=tf(at).