Ejercicios 4. Subespacios vectoriales. Operaciones con subespacios

4.1 En los siguientes apartados, estudie si es subespacio vectorial de \mathbb{R}^3 :

(a)
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x = y + 1 \right\},$$
 (b) $T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y + z - 2 = 0 \right\}$
(c) $W = \left\{ \vec{v} = \begin{pmatrix} a \\ 1 - b \\ 0 \end{pmatrix} : a, b \in \mathbb{R} \right\}.$

4.2 Sea $T = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : 2x - y - z = 0 \right\}$. Determine cuál de las siguientes respuestas es una base de T:

(a)
$$\mathcal{B}_T = \left\{ \begin{pmatrix} 1\\0\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\},$$
 (b) $\mathcal{B}_T = \left\{ \begin{pmatrix} 2\\-1\\-1\\0 \end{pmatrix} \right\}.$

4.3 Halle las ecuaciones paramétricas de los siguientes subespacios de \mathbb{R}^3 y la dimensión:

(a)
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x + y = 0 \right\},$$
 (b) $T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : 2x + y = 0 \\ x - z = 0 \right\}.$

- **4.**4 Halle una base y la dimensión del subespacio $S = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : \begin{array}{l} x-z=0 \\ y+t=0 \end{array} \right\}.$
- 4.5 Obtenga una base de los siguientes subespacios de \mathbb{R}^4 :

(a)
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : \begin{array}{l} z - t = 0 \\ y + z = 0 \\ 2z + y - t = 0 \end{array} \right\}$$
 (b) $T = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : \begin{array}{l} x + z - t = 0 \\ x + z - t = 0 \\ y + z = 0 \end{array} \right\}$.

4.6 Determine los valores del parámetro $a \in \mathbb{R}$ tales que dim(S) = 2, donde

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

4.8 Escriba las ecuaciones implícitas de los siguientes subespacios de \mathbb{R}^3 :

(a)
$$S = \left\{ \vec{v} = \begin{pmatrix} \alpha - \beta \\ \alpha \\ \beta \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\},$$
 (b) $T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} : \alpha \in \mathbb{R} \right\},$ (c) $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} : \alpha, \beta \in \mathbb{R} \right\}.$

4.9 Halle las ecuaciones implícitas de los siguientes subespacios de \mathbb{R}^4 :

(a)
$$S = \mathcal{L} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\},$$
 (b) $T = \mathcal{L} \left\{ \begin{pmatrix} 2 \\ 4 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\}.$

- **4.**10 Demuestre que $S = \mathcal{L}\left\{\begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}\right\}$ y $T = \mathcal{L}\left\{\begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix}\right\}$ son el mismo subespacio. Pruebe que el vector $\vec{x} = \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ no pertenece a dicho subespacio.
- 4.11 Sea $\mathcal{B}_S = \left\{ \vec{u}_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ una base de un subespacio S de \mathbb{R}^3 .
 - (a) Halle el vector de coordenadas de $\vec{x} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}$ respecto de la base \mathcal{B}_S .
 - (b) Estudie si el vector $\vec{w} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ pertenece al subespacio S.
- 4.12 Sea $\mathcal{B}_S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 11 \end{pmatrix} \right\}$ una base de un subespacio S de \mathbb{R}^3 y sea $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$. Determine si \vec{x} pertenece al subespacio S.

4.13 Sea
$$\mathcal{B}_T = \left\{ \vec{u}_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} \right\}$$
 una base de un subespacio T de \mathbb{R}^4 .

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

4.14 Sean los subespacios de \mathbb{R}^3 :

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \quad \begin{aligned} x &= 0 \\ y + z &= 0 \end{aligned} \right\}, \quad T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \ 2y + 2z &= 0 \end{aligned} \right\}, \quad W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : \ x + y &= 0 \right\}.$$

- (a) Halle la dimensión y una base de los subespacios intersección $S \cap T$ y $T \cap W$.
- (b) Halle la dimensión y una base de los subespacio suma S+W y T+W.

4.15 En
$$\mathbb{R}^3$$
 se consideran los subespacios $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = z \right\}, T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = y = 0 \right\}$ y $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y + z = 0 \right\}$. Pruebe que: (a) $\mathbb{R}^3 = S + T$, (b) $\mathbb{R}^3 = S + W$, (c) $\mathbb{R}^3 = T + W$. ¿En qué casos la suma es directa?

4.16 Sea
$$S = \mathcal{L}\left\{\begin{pmatrix}1\\0\\1\end{pmatrix}, \begin{pmatrix}1\\1\\-1\end{pmatrix}, \begin{pmatrix}2\\1\\0\end{pmatrix}\right\}$$
. Halle un subespacio Z tal que $\mathbb{R}^3 = S \oplus Z$.

4.17 Sean W_1 y W_2 los subespacios de \mathbb{R}^3 definidos por

$$W_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : z = 0 \right\}, \qquad W_2 = \mathcal{L} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \right\}.$$

Obtenga un sistema de generadores y la dimensión de $W_1 \cap W_2$ y $W_1 + W_2$.

4.18 Sean
$$S_1 = \mathcal{L}\left\{ \begin{pmatrix} 2\\4\\-1 \end{pmatrix}, \begin{pmatrix} 0\\0\\5 \end{pmatrix} \right\}$$
 y $S_2 = \mathcal{L}\left\{ \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\-3 \end{pmatrix} \right\}$. Halle el subespacio $S_1 + S_2$ y su dimensión.

4.19 Sean
$$S = \mathcal{L}\left\{ \begin{pmatrix} 3\\2\\4\\-2 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\-1\\5\\-6 \end{pmatrix} \right\}$$
 y $T = \mathcal{L}\left\{ \begin{pmatrix} 1\\0\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}$. Determine si las siguientes afirmaciones son verdaderas o falsas:

(a) Una base de
$$S$$
 es $B_S = \left\{ \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

(a) $S + I = \mathbb{K}^{-}$.

4.20 Sean
$$W_1 = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}$$
 y $W_2 = \left\{ \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} : y, z \in \mathbb{R} \right\}$ dos subespacios de \mathbb{R}^3 . Estudie si la suma de ambos subespacios es directa.

4.21 Halle un subespacio
$$W$$
 de \mathbb{R}^3 suplementario de $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{array}{l} x+y=0 \\ z=0 \end{array} \right\}$.

4.22 Sea el subespacio
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{array}{c} x = 0 \\ y + z = 0 \end{array} \right\}$$
. Halle un subespacio T tal que $\mathbb{R}^3 = S \oplus T$. Escriba $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ como suma de un vector de S y un vector de T .

- 4.23 En \mathbb{R}^4 , ¿es posible encontrar dos subespacios W_1 y W_2 tales que dim $(W_1) = 3$, dim $(W_2) = 2$ y $W_1 \cap W_2 = \{\vec{0}\}$?
- 4.24 Sean $W_1 = \left\{ \begin{pmatrix} -\alpha \\ \alpha \\ \alpha \end{pmatrix} : \alpha \in \mathbb{R} \right\}$ y $W_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x y + 2z = 0 \right\}$. Determina si se cumple que $\mathbb{R}^3 = W_1 \oplus W_2$.
- 4.25 Halle una base de S+T cuyos vectores al colocarlos por filas formen una matriz escalonada reducida, donde

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : \begin{array}{c} x = 0 \\ y + z = 0 \end{array} \right\}, \quad T = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : \begin{array}{c} x = 0 \\ z + t = 0 \end{array} \right\}.$$

- 4.26 En un espacio vectorial V con $\dim(V) = 5$; es posible encontrar dos subespacios W_1 y W_2 tales que $\dim(W_1) = 4$, $\dim(W_2) = 2$ y $W_1 \cap W_2 = \{\vec{0}\}$?
- 4.27 Sean los subespacios W_1 y W_2 que se dan a continuación. Halle una base de $W_1 + W_2$. ¿Es la suma directa? Obtenga $\dim(W_1 \cap W_2)$.

$$W_1 = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} : \begin{array}{c} x - y + z = 0 \\ x - t = 0 \end{array} \right\}, \quad W_2 = \mathcal{L} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

4.29 Halle unas ecuaciones paramétricas e implícitas de $W_1 \cap W_2$ y $W_1 + W_2$, donde

$$W_1 = \mathcal{L} \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 6 \\ -2 \end{pmatrix} \right\}, \quad W_2 = \mathcal{L} \left\{ \begin{pmatrix} 1 \\ -1 \\ 4 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 2 \\ 1 \end{pmatrix} \right\}.$$

4.30 Sean
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : z + t = 0 \right\}$$
 y $T = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : x + t = 0 \\ y + t = 0 \right\}$. Obtenga una ecuación paramétrica del subespacio intersección $S \cap T$.

4.31 Sean
$$S_1 = \mathcal{L}\left\{ \begin{pmatrix} 2\\4\\-1\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\5\\2 \end{pmatrix} \right\}$$
 y $S_2 = \mathcal{L}\left\{ \begin{pmatrix} 1\\2\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\-3\\0 \end{pmatrix} \right\}$. Halle el subespacio $S_1 + S_2$.

4.32 Sean
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : x + y + 2t = 0 \right\}$$
 y $T = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : x + t = 0 \\ y + t = 0 \right\}$. Halle una ecuación paramétrica del subespacio intersección $S \cap T$.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -