- 1. a. Dibujar la curva paramétrica dada, mostrando su dirección con una flecha. Eliminar el parámetro para obtener una ecuación cartesiana en x e y cuya gráfica sea la de la curva paramétrica $x = 1 \sqrt{4 t^2}$, y = 2 + t, $(-2 \le t \le 2)$ (vale 1p)
- b. Dibujar la región R dada en polares y calcular su área: R está limitado por el lazo más pequeño de la curva $r=1+2cos(\theta)$. (vale 1p)
- 2. Calcular todos los planos horizontales que son tangentes a la superficie cuya ecuación es $z=xye^{-(x^2+y^2)/2}$. ¿En que puntos son tangentes? (vale 2p)
- 3. La temperatura en el espacio tridimensional está dada por $T(x,y,z)=x^2-y^2+z^2+xz^2$ En el instante t=0 un dron pasa por el punto (1,1,2), volando seguún la trayectoria correspondiente a la intersección de las superficies $z=3x^2-y^2$ y $2x^2+2y^2-z^2=0$. Si la velocidad del dron es 7, ¿qué tasa de cambio de temperatura experimenta el dron en t=0? (vale 2p)
- 4. ¿Para qué valores de k, y a qué valor converge, la integral $\iint\limits_{x^2+y^2\leq 1} dA/(x^2+y^2)^k?$ (vale 2p)
- 5. ¿Calcular $\iint_{\mathfrak{I}} zdS$, sobre la superficie cónica $\mathfrak{I}=\{(x,y,z)\mid z=x^2+y^2\}$ entre z=0 y z=1. (vale 2p)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70