1. ECUACIONES LINEALES

Ecuaciones de primer orden

- 1.— Encontrar la solución de los siguientes problemas de valor inicial
 - 1. $\dot{x} = 5x$, x(0) = 2.

 - 2. $\dot{x} + x = 0$, $\dot{x}(2) = 1$. 3. $\dot{x} + x = te^{-t}$, x(0) = 3.

 - 4. $\dot{x} + 2x = b(t)$, x(0) = 4; siendo $b(t) = \begin{cases} 1 & \text{si } 0 \le t \le 3 \\ -1 & \text{si } t > 3. \end{cases}$ 5. $\dot{x} + x = b(t)$, x(0) = 1; siendo $b(t) = \begin{cases} t & \text{si } 0 \le t \le 1 \\ 0 & \text{si } t > 1. \end{cases}$
- 2.— Encontrar la solución de los siguientes problemas de valor inicial.
 - 1. $\dot{z} + 2iz = 0$, z(0) = 1 + i.
 - 2. $\dot{z} + (1 i)z = t$, z(0) = i.
- 3.— Sea a un número real positivo. Demostrar que toda solución de la ecuación diferencial

$$\dot{x} + ax = 0,$$

tiende a cero cuando t tiende a ∞ . Enunciar y demostrar un resultado análogo para ecuaciones con coeficientes complejos.

4.— Sea $b: [0, \infty) \to \mathbb{R}$ una función acotada y a un número real. Demostrar que el crecimiento de cualquier solución de la ecuación diferencial

$$\dot{x} + ax = b(t),$$

es, a lo sumo, exponencial.

5.– Sea a un número real positivo y sea $b: [0, \infty) \to \mathbb{R}$ una función tal que existe el límite

$$\lim_{t \to +\infty} b(t) = \beta.$$

Demostrar que toda solución de la ecuación diferencial

$$\dot{x} + ax = b(t),$$

tiene límite cuando t tiende a ∞ y dicho límite es β/a .

Ecuaciones de segundo orden

LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

2.
$$\ddot{y} - y = 0$$
, $y(0) = 1$, $\dot{y}(0) = 0$.

3.
$$\ddot{y} + 2\dot{y} + y = 0$$
, $y(0) = 1$, $\dot{y}(0) = 1$.

4.
$$\ddot{y} + 4y = 0$$
, $y(0) = 1$, $\dot{y}(0) = -1$.

5.
$$\ddot{y} - 2\dot{y} + 5y = 0$$
, $y(0) = -1$, $\dot{y}(0) = 1$.

6.
$$\ddot{y} + \dot{y} - 6y = 0$$
, $y(0) = 0$, $\dot{y}(0) = 2$.

7.
$$\ddot{y} - 3\dot{y} + 2y = 0$$
, $y(0) = 2$, $\dot{y}(0) = 1$.

7.— Hallar la solución de cada uno de los siguientes problemas de valor inicial:

1.
$$\ddot{y} + 3y = t^3 - 1$$
, $y(0) = 0$, $\dot{y}(0) = 1$.

2.
$$\ddot{y} - y = t^2 e^t$$
, $y(0) = 1$, $\dot{y}(0) = 0$.

3.
$$\ddot{y} + 2\dot{y} + y = e^{-t}, y(0) = 1, \dot{y}(0) = 1.$$

4.
$$\ddot{y} + 4y = t \operatorname{sen} 2t$$
, $y(0) = 1$, $\dot{y}(0) = -1$.

5.
$$\ddot{y} - 2\dot{y} + 5y = 2\cos^2 t$$
, $y(0) = -1$, $\dot{y}(0) = 1$.

6.
$$\ddot{y} + \dot{y} - 6y = \sec t + te^{2t}$$
, $y(0) = 1$, $y(0) = 1$.
7. $\ddot{y} - 3\dot{y} + 2y = e^t + e^{2t}$, $y(0) = 2$, $\dot{y}(0) = 1$.

1.
$$y - 3y + 2y = e + e$$
, $y(0) = 2$, $y(0) = 1$

8.- Hallar la solución del problema de valor inicial

$$\left\{ \begin{array}{l} \ddot{y}+4y=f(t)\\ y(0)=1\\ \dot{y}(0)=0, \end{array} \right.$$

siendo f la función $f(t) = \begin{cases} 1 & \text{si } 0 \le t \le 2 \\ 0 & \text{si } 2 < t. \end{cases}$

9.— Sean α, β números reales positivos. Demostrar que toda solución de la ecuación diferencial

$$\ddot{y} + \alpha \dot{y} + \beta y = 0,$$

tiende a cero cuando t tiende a ∞ . Probar que si α o β son negativos, entonces existe al menos una solución no acotada en \mathbb{R}^+ .

10. Sean B, C números reales, con $(B,C) \neq (0,0)$. Demostrar que existen $A, \varphi \in \mathbb{R}$, con A > 0, tales que

$$B\cos\omega t + C\sin\omega t = A\cos(\omega t + \varphi),$$

indicando la relación entre (B,C) y (A,φ) . Igualmente probar que si $D \in \mathbb{C} - \{0\}$, entonces existen $A, \varphi \in \mathbb{R}$, con A > 0, tales que

$$De^{(a+i\omega)t} + \bar{D}e^{(a-i\omega)t} = Ae^{at}\cos(\omega t + \varphi).$$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70