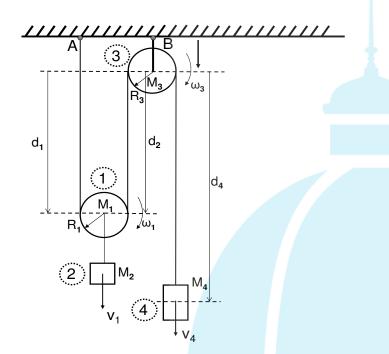
Segunda Parte



La figura representa un sistema formado por dos poleas, dos masas y una cuerda flexible, inextensible y de masa nula anclada firmemente al techo en el punto A.

La polea 1 tiene una masa M_1 y momento de inercia áxico I_1 respecto de su eje de revolución. De la misma forma, la polea 3 tiene una masa M_3 y momento de inercia áxico I_3 respecto de su eje de revolución. Además, según se muestra en la figura, la polea 1 lleva suspendida de su eje la masa de valor M_2 mediante un hilo vertical también inextensible y sin peso, y la masa 3 también se halla sujeta al techo en el punto B mediante un hilo vertical inextensible y sin peso.

Al final de la cuerda principal que, partiendo del punto A, soporta la polea 1 y pasa por la polea 3, cuelga una masa 4 de valor M_4 . Se verifica que la masa 4 pesa más que la 1 y la 2 juntas, es decir $M_4 > M_1 + M_2$. En el instante inicial, el sistema se halla en una posicion (no dibujada) en la que la cuerda está tensa y todas las masas en reposo.

A partir de dicho instante, se abandona el sistema a la acción de la gravedad y la masa 4 empieza a descender con aceleración constante a_4 .

Tomando las referencias indicadas para las velocidades instantáneas de traslación y rotación, y teniendo en cuenta que, según se desprende de la figura, se verifica: $d_1 + d_2 + d_4 = 2d_1 + d_4 = 2d_2 + d_4 = Cte$, se pide:

- 1) Determinar, por derivación, la expresión de la velocidad v_1 del centro de la polea de masa M_1 en función de la velocidad, v_4 , de descenso del bloque de masa M_4 . (1 punto)
- 2) Determinar (según las referencias dadas) la velocidad angular, ω_1 , de la polea de masa M_1 , como una expresión de v_4 y R_1 . (1 punto)
- 3) Determinar (según las referencias dadas) la velocidad angular, ω_3 , de la polea de masa M_3 , como una función de v_4 y R_3 . (1 punto)
- 4) Determinar el incremento de energía cinética, ΔE_{cA} , del conjunto formado por la polea de masa M_1 y la masa enganchada, M_2 , desde t=0 (en que todas las velocidades son nulas) hasta un instante genérico cualquiera, como una única expresión de I_1, R_1, M_1, M_2 , y v_4 . (1 punto)
- Teniendo en cuenta la relación $2d_1 + d_4 = Cte$, obtener Δd_1 como una función de Δd_4 entre el instante inicial y el citado instante genérico, y, en función de estos datos la disminución de energía potencial de todo el sistema (formado por las cuatro masas), $-\Delta E_p$, en función del valor g de la gravedad, de Δd_4 y de los demás datos del problema. (1 punto)
- 6) Utilizar el teorema de conservación de la energía mecánica, $\Delta E_c = -\Delta E_p$, del sistema total formado por las cuatro masas, para determinar v_4 como una función de Δd_4 y demás constantes del sistema $(M_4, g, M_1, M_2, I_1, R_1, I_3 \text{ y } R_3)$ y demostrar que puede expresarse como $v_4 = \sqrt{2k\Delta d_4}$. (1 punto)
- 7) Partiendo de la última expresión $(v_4 = \sqrt{2k\Delta d_4})$ y teniendo en cuenta que $\frac{d}{dt}(\Delta d_4) = v_4$, demostrar que $a_4 = \frac{dv_4}{dt} = k$. (1 punto)
- 8) Por identificación de los resultados de los apartados 6) y 7), obtener explícitamente el valor de la aceleración a_4 en función de los datos del problema.
- 9) Determinar la aceleración angular, α_3 , con que gira la polea de masa M_3 . (1 punto)
- 10) Utilizar los teoremas de la mecánica para determinar la tensión T_4 de la cuerda en el extremo unido a M_4 . (1 punto)

* * * * * * *

Duración: 90 minutos Calificación: 50 % del total del examen.