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Rootfinding of nonlinear equations

Problem: Given f : I = (a, b) ⊆ R→ R, find α ∈ C such that
f (α) = 0.
Definition: A sequence

{
x (k)

}
generated by a numerical method

is said to converge to α with order p ≥ 1 if

∃C > 0 :
|x (k+1) − α|
|x (k) − α|p

≤ C ,∀k ≥ k0,

where k0 ≥ 0 is a suitable integer. In such a case, the method is
said to be of order p. Notice that if p is equal to 1, in order for
x (k) to converge to α it is necessary that C < 1. In such an event,
the constant C is called the convergence factor of the method.
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Rootfinding of nonlinear equations

The convergence of iterative methods for rootfinding of nonlinear
equations depends in general on the choice of the initial datum
x (0). This allows for establishing only local convergence results,
that is, holding for any x (0) which belongs to a suitable
neighborhood of the root α. Methods for which convergence to α
holds for any choice of x (0) in the interval I , are said to be globally
convergent to α.
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Conditioning of a nonlinear equation

Consider f (x) = ϕ(x)− d = 0 with f ∈ C∞. Then:

The problem is well posed only if the function ϕ is invertible.
In such a case one gets α = ϕ−1(d) = G (d).

K (d) ≈ |d |
|α||f ′(α)|

, Kabs(d) ≈ 1

|f ′(α)|
(1)

The problem is thus ill-conditioned when f ′(α) is “small” and
well-conditioned if f ′(α) is “large”.
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Conditioning of a nonlinear equation

The analysis can be generalized to roots α with multiplicity m > 1.
Expanding ϕ in a Taylor series around α up to the m-th order
term, we get

d + δd = ϕ(α + δα) = ϕ(α) +
m∑

k=1

ϕ(k)(α)

k!
(δα)k + o((δα)m).

Since ϕ(k)(α) = 0 for k = 1, ...,m − 1, we obtain
δd = f (m)(α)(δα)m/m! so that an approximation to the absolute
condition number is

Kabs(d) ≈
∣∣∣∣ m!δd

f (m)(α)

∣∣∣∣1/m 1

|δd |
. (2)
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Conditioning of a nonlinear equation

Notice that the expression for the condition number of a simple
root is a special case of this one using m = 1. From this it also
follows that, even if δd is sufficiently small to make∣∣(m!δd)/(f (m)(α))

∣∣ < 1, Kabs(d) could nevertheless be a large
number. We therefore conclude that the problem of rootfinding of
a nonlinear equation is well-conditioned if α is a simple root and
|f ′(α)| is definitely different from zero, ill-conditioned otherwise.
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Conditioning of a nonlinear equation

Consider the following problem: Assume d = 0, let α be a simple
root of f and α̂ 6= α, let f (α̂) = r̂ 6= 0. We seek a bound for the
difference α̂− α as a function of the residual r̂ . Applying (1) yields

Kabs(0) ≈ 1

|f ′(α)|
.

Therefore, letting δx = α̂− α and δd = r̂ in the definition of
Kabs ,(Kabs = supδd∈D

‖δx‖
‖δd‖), we get

|α̂− α|
|α|

.
|r̂ |

|f ′(α)||α|
.
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Conditioning of a nonlinear equation

If α has multiplicity m > 1, using (2) instead of (1) and proceeding
as above, we get

|α̂− α|
|α|

.

(
m!

|f (m)(α)||α|m

)1/m

|r̂ |1/m. (3)

These estimates will be useful in the analysis of stopping criteria
for iterative methods.
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A geometric approach to root finding: Bisection method

The bisection method is based on the following property.
Property 6.1 (theorem of zeros for continuous functions):
Given a continuous function f : [a, b]→ R, such that
f (a)f (b) < 0, then ∃α ∈ (a, b) such that f (α) = 0.

Starting from I0 = [a, b], the bisection method generates a
sequence of subintervals Ik = [a(k), b(k)], k ≥ 0, with
Ik ⊂ Ik−1, k ≥ 1, fulfilling the property that f (a(k))f (b(k)) < 0.
Precisely, we set a(0) = a, b(0) = b and x (0) = (a(0) + b(0))/2.
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A geometric approach to root finding: Bisection method

The bisection iteration terminates at the m-th step for which
|x(m)− α| ≤ |Im| ≤ ε, where ε is a fixed tolerance and |Im| is the
length of Im. As for the speed of convergence of the bisection
method, notice that |I0| = b − a, while

|Ik | = |I0|/2k = (b − a)/2k , k ≥ 0.
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A geometric approach to root finding: Bisection method

Denoting by e(k) = x (k) − α the absolute error at step k, it follows
that |e(k)| ≤ (b − a)/2k , k ≥ 0, which implies lim

k→∞
|e(k)| = 0. The

bisection method is therefore globally convergent.
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A geometric approach to root finding: Bisection method

Moreover, to get |x (m) − α| ≤ ε we must take

m ≥ log2(b − a)− log2(ε) =
log((b − a)/ε)

log(2)
≈ log((b − a)/ε)

0.6931
.

In particular, to gain a significant figure in the accuracy of the
approximation of the root (that is |x (k) − α| = |x (j) − α|/10), one
needs k − j = log2(10) ≈ 3.32 bisections.
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A geometric approach to root finding: Bisection method

This singles out the bisection method as an algorithm of certain,
but slow, convergence. We must also point out that the bisection
method does not generally guarantee a monotone reduction of the
absolute error between two successive iterations, that is, we cannot
ensure a priori that

|e(k+1)| ≤ Mk |e(k)| for any k ≥ 0

with Mk < 1. Failure to satisfy this does not allow for qualifying
the bisection method as a method of order 1, according to the
definition given in the previous section.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

In order to devise algorithms with better convergence properties
than the bisection method, it is necessary to include information
from the values attained by f and, possibly, also by its derivative f ′

(if f is differentiable) or by a suitable approximation. For this
purpose, let us expand f in a Taylor series around α and truncate
the expansion at the first order. The following linearized version of
problem f : I = (a, b) ⊆ R→ R, find α ∈ C such that f (α) = 0 is
obtained

f (α) = 0 = f (x) + (α− x)f ′(ψ)

for a suitable ψ between α and x .
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

This equation prompts the following iterative method: for any
k ≥ 0, given x (k), determine x (k+1) by solving equation

f (x (k)) + (x (k+1) − x (k))qk = 0,

where qk is a suitable approximation of f ′(x (k)). The method
described here amounts to finding the intersection between the
x-axis and the straight line of slope qk passing through the point
(x (k), f (x (k))), and thus can be more conveniently set up in the
form

x (k+1) = x (k) − q−1k f (x (k)),∀k ≥ 0.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

We consider below four particular choices of qk :
The chord method. We let

qk = q =
f (b)− f (a)

b − a
,∀k ≥ 0

from which, given an initial value x (0), the following recursive
relation is obtained

x (k+1) = x (k) − b − a

f (b)− f (a)
f (x (k)), k ≥ 0.

The order of convergence of this method is p = 1.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

The Secant method. We let

qk =
f (x (k))− f (x (k−1))

x (k) − x (k−1)
, ∀k ≥ 0.

(6.13)
from which, giving two initial values x (−1) and x (0), we obtain the
following relation

x (k+1) = x (k) − x (k) − x (k−1)

f (x (k))− f (x (k−1))
f (x (k)), k ≥ 0.

(6.14)
Requires an extra initial point, and the incremental ratio at each
step.The order of convergence is p = (1 +

√
5)/2 ≈ 1.63.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

The Regula Falsi (or false position) method. This is a variant
of the secant method in which, instead of selecting the secant line
through the values (x (k), f (x (k))) and (x (k−1), f (x (k−1))), we take
the one through (x (k), f (x (k))) and (x(k ′), f (x(k ′))), k ′ being the
maximum index less than k such that f (x(k ′)) · f (x (k)) < 0.
Precisely, once two values x (−1) and x (0) have been found such
that f (x (−1)) · f (x (0)) < 0, we let

x (k+1) = x (k) − x (k) − x (k
′)

f (x (k))− f (x (k ′))
f (x (k)), k ≥ 0.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

Notice that the sequence of indices k ′ is nondecreasing; therefore,
in order to find at step k the new value of k ′, it is not necessary to
sweep all the sequence back, but it suffices to stop at the value of
k ′ that has been determined at the previous step.
The Regula Falsi method, though of the same complexity as the
secant method, has linear convergence order. However, unlike the
secant method, the iterates generated by the method are all
contained within the starting interval [x (−1), x (0)].
In this respect, the Regula Falsi method, as well as the bisection
method, can be regarded as a globally convergent method.
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The Methods of Chord, Secant and Regula Falsi and
Newton’s Method

The Newton’s method. Assuming that f ∈ C 1(I ) and that
f ′(α) 6= 0 (i.e., α is a simple root of f ), if we let
qk = f ′(x (k)),∀k ≥ 0 and assign the initial value x (0), we obtain
the so called Newton’s method

x (k+1) = x (k) − f (x (k))

f ′(x (k))
, k ≥ 0.

At the k-th iteration, Newton’s method requires the two functional
evaluations f (x (k)) and f ′(x (k)). The increasing computational
cost with respect to the methods previously considered is more
than compensated for by a higher order of convergence, Newton’s
method being of order 2.
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Newton’s Method for simultaneous nonlinear equations.

Let

~F (~x) =

[
f1(~x)
f2(~x)

]
≈[

f1(~x (1)) + df1
dx1

(~x (1))(x1 − x
(1)
1 ) + df1

dx2
(~x (1))(x2 − x

(1)
2 )

f2(~x (1)) + df2
dx1

(~x (1))(x1 − x
(1)
1 ) + df2

dx2
(~x (1))(x2 − x

(1)
2 )

]
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Newton’s Method for simultaneous nonlinear equations.

Assuming that ~F (~x) = 0 and doing some calculations:[
−f1(~x (1))

−f2(~x (1))

]
=[

df1
dx1

(~x (1)) df1
dx2

(~x (1))
df2
dx1

(~x (1)) df2
dx2

(~x (1))

][
(x1 − x

(1)
1 )

(x2 − x
(1)
2 )

]
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Newton’s Method for simultaneous nonlinear equations.

And then:

[
x1
x2

]
=

[
x
(1)
1

x
(1)
2

]
−

[
df1
dx1

(~x (1)) df1
dx2

(~x (1))
df2
dx1

(~x (1)) df2
dx2

(~x (1))

]−1 [
f1(~x (1))

f2(~x (1))

]
or

~x (i+1) = ~x (i) − J(~x (i))−1 ~F (~x (i))
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Stopping Criteria.

Suppose that
{
x (k)

}
is a sequence converging to a zero α of the

function f .
Below, ε is a fixed tolerance, e(k) = α− x (k) denotes the absolute
error, and we assume that f is continuously differentiable in a
suitable neighborhood of the root.
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Stopping Criteria.

There are two possible stopping criteria:

Stopping test based on the residual: The iterative process
terminates at the first step k such that |f (x (k))| < ε.

Stopping test based on the increment: the iterative process
terminates as soon as |x (k+1) − x (k)| < ε.
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Stopping Criteria.

First test analysis: Situations can arise where the test turns out
to be either too restrictive or excessively optimistic. Remember (3):

|e(k)|
|α|

.

(
m!

|f (m)(α)||α|m

)1/m

|f (x (k))|1/m.

In particular, in the case of simple roots, the error is bound to the
residual by the factor 1/|f ′(α)| so that the following conclusions
can be drawn:
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Stopping Criteria.

1 If |f ′(α)| ≈ 1, then |e(k)| ≈ ε therefore, the test provides a
satisfactory indication of the error;

2 If |f ′(α)| << 1, the test is not reliable since |e(k)| could be
quite large.

3 If, finally, |f ′(α)| >> 1, we get |e(k)| << ε and the test is too
restrictive with respect to ε.
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Stopping Criteria.

Second test analysis. Let
{
x (k)

}
be generated by the fixed-point

method x (k+1) = φ(x (k)). Using the mean value theorem, we get

e(k+1) = φ(α)− φ(x (k)) = φ′(ξ(k))e(k),

where ξ(k) lies between x (k) and α. Then,

x (k+1) − x (k) = e(k) − e(k+1) = 1− φ′(ξ(k))e(k),

so that, assuming that we can replace φ′(ξ(k)) with φ′(α), it
follows that

e(k) ≈ 1

1− φ′(α)
(x (k+1) − x (k)).
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Stopping Criteria.

We can conclude that the test:

1 is unsatisfactory if φ′(α) is close to 1.

2 provides an optimal balancing between increment and error in
the case of methods of order 2 for which φ′(α) = 0 as is the
case for Newton’s method.

3 is still satisfactory if −1 < φ′(α) < 0.
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