Tema 2.2: Notaciones Asintóticas

Diseño y Análisis de Algoritmos

Contenidos

- Introducción
- 2 Definiciones informales
- 3 Definiciones formales
- Warios parámetros
- **5** Comentarios adicionales
- 6 Cota inferior para algoritmos de ordenación

URJC DAA 2 / 39

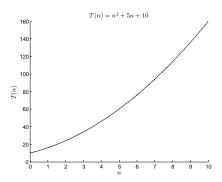
Notaciones asintóticas

- Nos interesa cómo crece el tiempo de ejecución
 - Según aumenta el tamaño de la entrada
 - "En el límite", según el tamaño crece sin cota
- Eficiencia asintótica de algoritmos
 - Asumimos que las entradas son muy grandes
 - Nos interesa el "orden de crecimiento"
 - Las constantes y términos de orden inferior no son relevantes, al ser dominados por un término de orden superior
- El algoritmo con mejor coste o eficiencia asintótica suele ser la mejor elección
 - Salvo para entradas muy pequeñas

URJC DAA 3 / 39

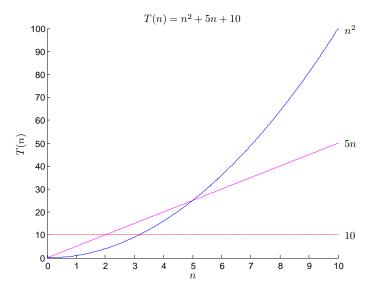
Tiempo de ejecución de un algoritmo

- El tiempo de ejecución lo deberemos expresar mediante una fórmula (función) matemática
 - Es importante saber qué argumentos debe tomar dicha función
- Consideremos la siguiente función:



URJC DAA 4 / 39

Descomposición



URJC DAA 5 / 39

Términos de mayor orden

- El término que más nos importa es n^2
 - Es el término de mayor orden
 - Puede haber varios (si la función depende de más de un parámetro)
- Para valores pequeños de n todos los términos influyen
- Mediante la notación asintótica vamos a simplificar y a aislar dichos términos que más influyen cuando n toma valores muy grandes

URJC DAA 6 / 39

Primeras nociones informales

- Supongamos que tenemos dos funciones f(n) y g(n)
 - f(n) es asintóticamente menor que g(n) cuando:

$$f(n) < g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

• f(n) es asintóticamente mayor que g(n) cuando:

$$f(n) > g(n) \iff g(n) < f(n)$$

• f(n) es asintóticamente igual que g(n) cuando:

$$f(n) = g(n) \iff f(n) \not< g(n) \quad y \quad g(n) \not< f(n)$$

URJC DAA 7 / 39

Órdenes que más aparecen

Considerados generalmente como "tratables"

$$1 < \log n < n < n \log n < n^2$$

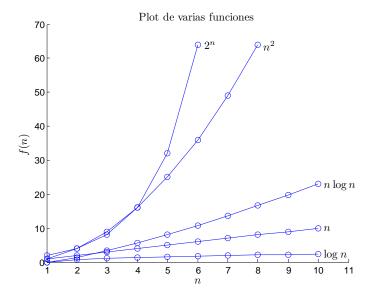
Considerados generalmente como "intratables"

$$n^2 < n^3 < 2^n < n!$$

- n² se encuentra en el límite
- Siempre hay que tener en cuenta el tamaño de la entrada (n) para poder decir si un problema es tratable o intratable para cierto algoritmo

URJC DAA 8 / 39

Curvas



URJC DAA 9 / 39

Tiempos

log n	n	n log n	n^2	n ³	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65.536
5	32	160	1024	32.768	4.295.967.296

- Un orden exponencial es extremadamente costoso, incluso frente a ordenes polinómicos
- Un orden factorial es incluso más costoso que un orden exponencial

URJC DAA 10 / 39

Noción informal de cota superior $\mathcal O$

- f(n) es asintóticamente menor o igual que g(n)
- g(n) es una cota superior de f(n) (asintóticamente)

$$f(n) \in \mathcal{O}(g(n)) \iff f(n) \leq g(n)$$

- Ejemplos:
 - $2n + 5 \in \mathcal{O}(3n^2 8n)$
 - $2n + 5 \in \mathcal{O}(n + 10)$
 - $2n + 5 \in \mathcal{O}(n!)$
 - $2n + 5 \in \mathcal{O}(n)$ \longleftarrow Querremos la cota superior más baja

URJC DAA 11 / 39

Noción informal de cota inferior Ω

- f(n) es asintóticamente mayor o igual que g(n)
- g(n) es una cota inferior de f(n) (asintóticamente)

$$f(n) \in \Omega(g(n)) \iff f(n) \geq g(n)$$

- Ejemplos:
 - $2n + 5 \in \Omega(3 \log n)$
 - $2n + 5 \in \Omega(4n + 10)$
 - $2n + 5 \in \Omega(1)$
 - $2n + 5 \in \Omega(n)$ \longleftarrow Querremos la cota inferior más alta

URJC DAA 12 / 39

Noción informal de cota ajustada ⊖

- f(n) es asintóticamente igual que g(n)
- g(n) es una cota ajustada de f(n) (asintóticamente)

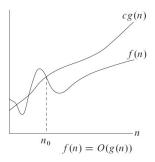
$$f(n) \in \Theta(g(n)) \iff f(n) = g(n)$$

- Ejemplos:
 - $2n + 5 \in \Theta(8n + 10)$
 - $2n + 5 \in \Theta(n)$
- ullet Hay otras cotas (por ejemplo, o, ω), que no veremos en la asignatura

URJC DAA 13 / 39

Definición formal de cota superior \mathcal{O}

$$\mathcal{O}(g(n)) = \{ f(n) : \exists c > 0 \text{ y } n_0 > 0 / 0 \le f(n) \le c \cdot g(n), \forall n \ge n_0 \}$$



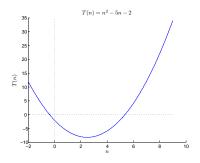
• Idea principal: a partir de n_0 , $c \cdot g(n)$ siempre supera (o iguala) a f(n)

URJC DAA 14 / 39

- Para demostrar que una función $f(n) \in \mathcal{O}(g(n))$ será necesario encontrar **una** (cualquier) pareja de constantes c > 0 y $n_0 > 0$, de tal forma que se verifiquen las condiciones de la definición
- Ejemplo: demostrar que $5n + 2 \in \mathcal{O}(n)$
 - Hay que encontrar c > 0 y $n_0 > 0$ tales que $5n + 2 \le cn$, $\forall n \ge n_0$
 - Para ello, seguimos los siguientes pasos:
 - 1 Elegir una constante adecuada (por ejemplo c = 6)
 - 2 Buscar un n > 0 tal que se cumpla que $5n + 2 \le cn$
 - Para c = 6 se cumple para todo $n \ge 2$, luego podemos tomar $n_0 = 2$, y hemos encontrado una pareja de constantes (hay infinitas parejas más, pero basta con encontrar una)

URJC DAA 15 / 39

- Ejemplo: demostrar que $5n + 2 \in \mathcal{O}(n^2)$
 - ① Elegir una constante adecuada (por ejemplo c=1)
 - 2 Buscar qué valores de *n* hacen que se cumpla que $5n + 2 \le n^2$
 - Para ello analizamos la desigualdad $n^2 5n 2 \ge 0$



URJC DAA 16 / 39

- continuación...
 - $n^2 5n 2$ es una función cuadrática (convexa) con raíces en -0, 37 y 5, 37
 - Por tanto, siempre será positiva para $n \ge 6$
 - Para c = 1 y $n_0 = 6$ se cumplen las condiciones de la definición y queda demostrado
- Si escogemos c = 5, $n_0 = 2$ es suficiente
- Si escogemos c = 8, $n_0 = 1$ es suficiente

URJC DAA 17 / 39

- Ejemplo: demostrar que $3n^2 + 2n 2 \in \mathcal{O}(n)$
 - En este caso no vamos a poder encontrar las constantes (obviamente, ya que no lo podremos demostrar al no ser cierto)
 - Cojamos la constante que cojamos tendríamos que demostrar:

$$3n^2 + 2n - 2 \le cn$$
 \Rightarrow $3n^2 + (2-c)n - 2 \le 0$

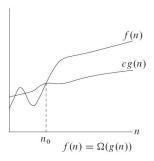
para todo $n \ge n_0$

- Como $3n^2 + (2-c)n 2$ es una función cuadrática convexa, que crece hasta el $+\infty$ según aumenta n, no va a ser negativa **siempre** a partir de ningún n_0
- Por tanto, es imposible encontrar una pareja de constantes c y n_0

URJC DAA 18 / 39

Definición formal de cota inferior Ω

$$\Omega(g(n)) = \{ f(n) : \exists c > 0 \text{ y } n_0 > 0 / 0 \le c \cdot g(n) \le f(n), \forall n \ge n_0 \}$$



• Idea principal: a partir de n_0 , f(n) siempre supera (o iguala) a $c \cdot g(n)$

URJC DAA 19 / 39

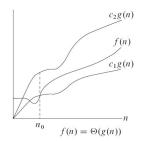
Demostración de $f(n) \in \Omega(g(n))$

- Ejemplo: demostrar que $3n^2 + 2 \in \Omega(n)$
 - ① Elegir una constante adecuada (por ejemplo c = 5)
 - Buscar valores de *n* tales que se cumpla $3n^2 + 2 > 5n$
 - Hay que ver para qué valores de n se cumple que $3n^2 5n + 2 > 0$
 - $3n^2 5n + 2$ es una función cuadrática (convexa) con raíces en 2/3 y 1
 - Por tanto, siempre será positiva para $n \ge 1$
 - Para c = 5 y $n_0 = 1$ se cumplen las condiciones de la definición y queda demostrado

URJC DAA 20 / 39

Definición formal de cota ajustada ⊖

$$\Theta(g(n)) = \left\{ f(n) : \exists c_1 > 0, c_2 > 0 \text{ y } n_0 > 0 / 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \right\}$$



• Idea principal: a partir de n_0 , f(n) siempre queda en medio de $c_1g(n)$ y $c_2g(n)$

URJC DAA 21 / 39

Demostración de $f(n) \in \Theta(g(n))$

$$f(n) \in \Theta(g(n)) \Longleftrightarrow \left\{ egin{array}{l} f(n) \in \mathcal{O}(g(n)) \\ y \\ f(n) \in \Omega(g(n)) \end{array} \right.$$

- Ejemplo: demostrar que $n^2/2 3n \in \Theta(n^2)$
 - Se busca que $c_1 n^2 < n^2/2 3n < c_2 n^2$
 - Encontramos, por ejemplo: $c_1 = 1/14$ para n > 7 (Ω)
 - Y, por ejemplo: $c_2 = 1/2$ para n > 1 (\mathcal{O})
 - En este momento queda demostrado
 - Según la definición habríamos encontrado $c_1 = 1/14$, $c_2 = 1/2$, y $n_0 = 7$

URJC DAA 22 / 39

Funciones de dos parámetros

- Ejemplo: mezclar dos vectores ordenados de longitudes n y m
 - $T(n,m) \in \Theta(n+m)$
- Definición formal de O:

$$\mathcal{O}(g(n,m)) = \Big\{ f(n,m) : \exists c > 0, n_0 > 0, y m_0 > 0 / \\ 0 \le f(n,m) \le c \cdot g(n,m), \forall n \ge n_0, y m \ge m_0 \Big\}$$

URJC DAA 23 / 39

Funciones de dos parámetros

En la práctica usaremos límites

$$f(n,m) > g(n,m) \iff \begin{cases} \lim_{n \to \infty} \frac{g(n,m)}{f(n,m)} = 0 & \text{y} \quad \lim_{m \to \infty} \frac{g(n,m)}{f(n,m)} \neq \infty \\ & \text{o} \end{cases}$$

$$\lim_{m \to \infty} \frac{g(n,m)}{f(n,m)} = 0 \quad \text{y} \quad \lim_{m \to \infty} \frac{g(n,m)}{f(n,m)} \neq \infty$$

URJC DAA 24 / 39

Simplificación

- Simplificar $\Theta(3m^2n + m^3 + 10mn + 2n^2)$
 - Eliminar constantes

$$\Theta(m^2n + m^3 + mn + n^2)$$

- 2 Simplificar términos "contenidos" en otros
 - $m^2 n > mn$, por tanto, se puede eliminar el término mn

$$\lim_{n \to \infty} \frac{mn}{m^2 n} = \frac{1}{m} \neq \infty \quad \text{y} \quad \lim_{m \to \infty} \frac{mn}{m^2 n} = 0$$

$$\Theta(m^2n+m^3+n^2)$$

 Si probamos las tres combinaciones de parejas de funciones que aparecen en la fórmula final veremos que ninguna es superior a otra

URJC DAA 25 / 39

- Sea ρ alguna medida de complejidad computacional asintótica
 - Las constantes no importan

$$\rho(kg(n)) = \rho(g(n))$$

• Término de mayor orden de un polinomio

$$\rho(a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x^1 + a_0) = \rho(x^m)$$

La base de los logaritmos no importa

$$\rho(\log_x g(n)) = \rho(\frac{\log_y g(n)}{\log_y x}) = \rho(\frac{1}{\log_y x} \log_y g(n)) = \rho(\log_y g(n)) = \rho(\log_y g(n))$$

URJC DAA 26 / 39

- \mathcal{O} , Ω , y Θ definen **conjuntos**
 - Lo correcto es escribir $f(n) \in \mathcal{O}(g(n))$
 - A veces se escribe $f(n) = \mathcal{O}(g(n))$, aunque es un "abuso" de notación
 - Y lo mismo con Ω y Θ
- Las funciones (f(n), g(n), f(n, m), etc.) son siempre positivas
- Es un error decir que si $f(n) \in \mathcal{O}(g(n))$, entonces f(n) tarda al menos g(n)
 - Al contrario, tarda como mucho g(n) (g(n) es **cota superior**)
- Con estas definiciones las constantes no influyen: se proporcionan cotas hasta un factor constante multiplicativo
- Hay notaciones en las que tratan a los términos logarítmicos como irrelevantes también

URJC DAA 27 / 39

- ¡Que un algoritmo tarde $\mathcal{O}(n^2)$, $\Omega(n^2)$, o $\Theta(n^2)$ para algunas entradas no quiere decir que tarde $\mathcal{O}(n^2)$, $\Omega(n^2)$, o $\Theta(n^2)$ para todas, o en general!
- Cuando hablamos de O normalmente lo hacemos en referencia al peor caso, que es cuando un algoritmo tarda más
 - En ese caso damos una cota superior del tiempo o número de operaciones
 - Es como una "garantía" de que el coste nunca va a superar la cota proporcionada
- Cuando se indica una cota, siempre hay que asociarla a un determinado tipo de entrada:
 - Caso mejor, peor, o medio

URJC DAA 28 / 39

- Si se pide realizar una demostración utilizando la definición debéis encontrar las constantes que verifiquen las condiciones de las definiciones
- Si no se pide, podréis usar límites:

$$f(n) \in \Theta(g(n)) \Longleftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \text{constante} > 0$$
 $f(n) \in \Omega(g(n)) \Longleftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$ constante o infinito
 $f(n) \in \mathcal{O}(g(n)) \Longleftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$ constante o cero

URJC DAA 29 / 39

• ¡La elección del tamaño de entrada es crucial!

0	000		
1	001		
2	010		
3	011		
4	100		
5	101		
6	110		
7	111		

- ¿Qué representa *n*, el número de bits (3), o el número total de palabras (8)?
 - Ambas posibilidades son válidas, pero hay que especificar claramente cuál se va a usar

URJC DAA 30 / 39

Ordenación por comparación

- Supongamos que tenemos un problema de ordenación por comparación de una secuencia de datos
 - Solo se usan comparaciones para determinar el orden final
- Los algoritmos que resuelven el problema pueden aplicarse para cualquier tipo de datos (enteros, reales, cadenas,...)
- Si los datos son reales, ¿merece la pena realizar un estudio sobre la distribución de éstos?
 - NO. Solo interesa el puesto en la ordenación (primero, segundo,..., último), y no los valores de los reales
- Entonces, ¿cómo se analizan?
 - Escogiendo el caso mejor, peor, medio...
- La cota inferior del tiempo para una secuencia de *n* datos es:

 $\Omega(n \log n)$

URJC DAA 31 / 39

Ordenación en tiempo lineal

- Existen algoritmos de ordenación que tardan $\mathcal{O}(n)$, pero usan otras operaciones diferentes de las comparaciones
- Counting-sort
 - Los elementos a ordenar son enteros y pertenecen al intervalo [0, k]
 - Si $k \in \mathcal{O}(n)$, entonces el algoritmos tarda $\Theta(n)$
 - Usa tres vectores:
 - A[1..n], es el vector de entrada
 - B[1..n], es el vector de salida
 - C[0..k], es un vector auxiliar

URJC DAA 32 / 39

Idea del counting-sort

 Se recorre la secuencia A y se cuenta el número de veces que aparece cada entero

3

n = 8

• Hay varias formas de obtener el vector ordenado

A continuación se describe un algoritmo eficiente

URJC DAA 33 / 39

Counting-sort

```
Counting-sort(A)
FOR i=0..k
                                 \Theta(k)
  C[i] = 0
                                 \Theta(n)
FOR j=1..length(A)
  C[A[i]]++
                                 \Theta(k)
FOR j=1..k
  C[i] = C[i] + C[i-1]
                                 \Theta(n)
FOR j=length(A)..1
  B[C[A[j]]] = A[i]
  C[A[i]]--
```

•
$$T(n) \in \Theta(n+k)$$

• Si $k \in O(n)$, entonces $T(n) \in \Theta(n)$

URJC DAA 34 / 39

Algoritmos de ordenación y permutaciones

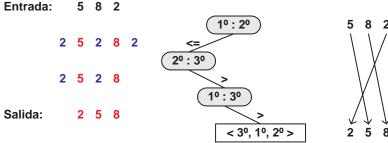
• Los algoritmos de ordenación por comparación tienen que ser capaces de generar cualquier permutación de un vector:

• Para un vector de *n* elementos, hay *n*! posibles permutaciones

URJC DAA 35 / 39

Algoritmos de ordenación y comparaciones

 Deben realizar varias comparaciones hasta hasta determinar la permutación correcta para cualquier entrada

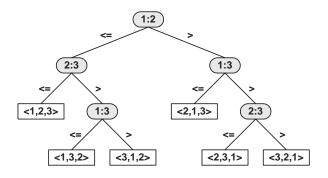


- Incertidumbre
- Ordenados correctamente

URJC DAA 36 / 39

Algoritmos de ordenación como árboles de decisión

• Los algoritmos de ordenación pueden verse de manera abstracta en términos de un árbol de decisión:



(X:Y)

Se comparan los elementos Xº e Yº de la secuencia original

<X,Y,Z>

Secuencia final <X°. Y°. Z°>

URJC DAA 37 / 39

Cota inferior para algoritmos de ordenación

- Cualquier permutación de los n elementos debe aparecer como hoja del árbol
- Hay n! permutaciones posibles
- La profundidad o altura máxima de una hoja determina en nº de comparaciones en el peor caso
- Nos interesaría diseñar un algoritmo cuyo árbol tuviera la profundidad mínima
- Una cota inferior de la altura de árbol en el peor caso es una cota inferior del nº de comparaciones para cualquier algoritmo de ordenación por comparación

URJC DAA 38 / 39

Cota inferior para algoritmos de ordenación

Teorema

Cualquier algoritmo de ordenación por comparaciones necesita $\Omega(n \log n)$ comparaciones en el peor caso

Demostración

Tenemos un árbol de decisión de altura h con l hojas (hay que demostrar que $h \in \Omega(n \log n)$)

- $n! \le l$, tiene que haber por lo menos n! hojas
- $l \leq 2^h$, un árbol binario de altura h tiene como mucho 2^h hojas

$$n! \le l \le 2^h \quad \Rightarrow \quad n! \le 2^h$$

$$\log_2(n!) \le \log_2(2^h) \quad \Rightarrow \quad h \ge \log_2(n!) \in \Omega(n \log n)$$

Demostrar que $\log_2(n!) \in \Omega(n \log n)$ es un ejercicio para casa/práctica

URJC DAA 39 / 39