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Introduction to pipelining 3 
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Pipeline 4 

 Implementation technique: Multiple instructions 

overlap their execution over time. 

 A costly operation is divided into several simpler sub-

operations. 

 Sub-operation execution in stages. 

 Effects: 

 Throughput is increased. 

 Latency does not decrease. 
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Pipeline 5 

Cycle1 

Cycle 2 

Cycle 3 

Cycle 4 

IF1 

IF2 ID1 

ID2 EX1 IF3 

ID3 EX2 IF4 M1 

Cycle 5 
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IF6 ID5 
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W4 

Filling the pipeline 

Latency 5 cycles 

Throughput (ideal)  1 instruction per cycle 
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Pipeline stages 6 

 Instruction Fetch (IF) 

 Send PC value to memory. 

 Fetch current instruction. 

 Update PC (e.g. add 4). 
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Pipeline stages 7 
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Pipeline stages 8 

 Instruction Decode (ID) 

 Decode current instruction. 

 Read referenced source registers values. 

 Perform equality test on register values. 

 Sign-extend offset field of instruction. 

 Compute possible branch target (offset + incremented 

PC). 
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Pipeline stages 9 
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Pipeline stages 10 

 Execution / Effective Address(EX) 

 ALU operates on operands: 

Memory reference: ALU adds base register and offset to 

form effective address. 

 Register-Register: ALU performs operation o values from 

register file. 

 Register-Immediate: ALU performs operation on value from 

register file and sign extended immediate. 
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Pipeline stages 11 
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Pipeline stages 12 

 Memory Access (MEM) 

 Load instructions: 

 Read using effective address computed in EX. 

 Store instructions: 

Write data from second register read from register file in ID 

into effective address computed in EX. 

 

 Write-back (WB) 

Write result (from memory or ALU) into register file. 
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Pipeline stages 13 
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Pipeline over time 14 
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Pipeline effects 15 

 A n-depth pipeline, has n times the needed 
bandwidth compared to the non-pipelined version 
when clock rate is the same. 

 Solution: Caching, caching, caching, … 

 

 Separation into data and instruction caches 
suppresses some memory conflicts. 

 

 Instructions in the pipeline should not try to use the 
same resource at the same time. 

 Solution: Introduce registers at every stage boundary. 
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Stages communication 16 
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Example 17 

 Non-pipelined processor: 

 Clock cycle: 1ns 

 ALU operations (40%) and branching (20%): 4 cycles. 

Memory operations (40%): 5 cycles. 

 Pipeline overhead: 0.2 ns 

 ¿Which is the pipelined version speedup? 

 

7.3
2.1

4.4

2.01

4.454.046.01CPIcycleclock 







ns

ns
S

nsnst

nsnst

pipeline

orig
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Structural hazards 

Data hazards 

Control hazards 

Pipeline hazards 18 
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Hazards 19 

 Hazard: Situation preventing next instruction to start at 
the expected clock cycle. 

 Hazards reduce pipelined architectures performance. 

 

 Hazards: 

 Structural hazard. 

 Data hazard. 

 Control hazard. 

 

 Simple approach for hazards: 

 Stall the instruction flow. 

 Already started instructions will continue. 
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Structural hazard 20 

 When the processor cannot support all possible 
instruction sequences. 

 Two pipeline stages need to use the same resource at 
the same cycle. 

 

 Reasons: 

 Functional units which are not fully pipelined. 

 Functional units which are not duplicated. 

 

 These hazards can be avoided at the cost of a 
more expensive hardware. 
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Impact of stalls 21 

 Pipeline speedup. 

 

 

 Pipeline ideal CPI is 1. 

 Need to add stall cycles per instruction. 

 Non pipelined processor: 

 CPI=1, but clock cycle much higher. 

 Clock cycle is N times pipelined cycle. 

 N is pipeline depth 

pipelinedpipelined

pipelinednon pipelinednon 

cycle

cycle

pipelined instr time average

pipelinednon  instr time average






CPI

CPI
S

ninstructioper  stalls 1

depth pipeline


S
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Structural hazard: Example 22 
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Structural hazard: Example 23 
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Example 24 

 Two alternative designs: 

 A: No structural hazard. Clock cycle 1ns. 

 B: With structural hazards. Clock cycle 0.9 ns. 

 Data access instructions with hazards: 30%. 

 

 ¿Which is the fastest alterantive? 

   nscycleCPIAt

nsnscycleCPIAt

inst

inst

26.19.04.19.0114.016.0)(

111)(





Computer Architecture - 2014 - J. Daniel García 



Structural hazards 

Data hazards 

Control hazards 

Pipeline hazards 25 
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Riesgos de datos 26 

 A data hazard happens when the pipeline modifies 

the read/write access order to operands. 

I1: DADD R1, R2, R3 
I2: DSUB R4, R1, R5 
I3: AND R6, R1, R7 
I4: OR R8, R1, R9 
I5: XOR R10, R1, R11 

 I2 reads R1 before I1 modifies it. 

 I3 reads R1 before I1 modifies it. 

 I4 gets the right value 

 Register file read in second 

half of cycle. 

 I5 gets right value. 
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Data hazard 27 
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Stalls in data hazards 28 
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Data hazard: RAW 29 

 Read After Write. 

 Instruction i+1 tries to read a datum before instruction i 
writes it. 

i: add r1, r2, r3 
i+1: sub r4, r1, r3 

 If there is a data dependency: 

 Instructions can neither be executed in parallel nor 
overlap. 

 Solutions: 

 Hardware detection. 

 Compiler control. 
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Data hazard: WAR 30 

 Write After Read: 

 Instruction i+1 modifies operand before instruction i reads 
it. 

i: sub r4, r1, r3 
i+1: add r1, r2, r3 
i+2: mul r6, r1, r7 

 Also known as anti-dependency (compiler domain). 

 Name reuse. 

 Cannot happen in MIPS with 5-stages pipeline. 

 All instructions with 5 stages. 

 Reads are always in stage 2. 

 Writes are always in stage 5. 
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Data hazards: WAW 31 

 Write After Write: 

 Instruction i+1 modifies operand before instruction i 
modifies it. 

i: sub r1, r4, r3 
i+1: add r1, r2, r3 
i+2: mul r6, r1, r7 

 Also known as output dependency (compiler domain). 

 Name reuse. 

 Cannot happen in MIPS with 5-stages pipeline. 

 All instructions with 5 stages. 

 Writes are always in stage 5. 
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Solutions to data hazards 32 

 RAW dependencies: 

 Forwarding. 

 

 WAR y WAW dependencies: 

 Register renaming: 

 Statically by compiler. 

 Dynamically by hardware. 
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Forwarding 33 

 Technique to avoid some data stalls. 

 Basic idea: 

 No need to wait until result is written into register file. 

 Result is already in pipeline registers. 

 Use this value instead of the one from the register file. 

 

 Implementation: 

 Results from EX and MEM stages written into ALU input 
registers. 

 Forwarding logic selects between real input and 
forwarding register. 
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Forwarding 34 
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Forwarding limitations 35 

 Not every hazard can be avoided with forwarding. 

 You cannot travel backwards in time! 

I1: LD R1, (0)R2 
I2: DSUB R4, R1, R5 
I3: AND R6, R1, R7 
I4: OR R8, R1, R9 
I5: XOR R10, R1, R11 
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Memory access stalls 36 
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Structural hazards 

Data hazards 

Control hazards 

 Compile time alternatives 

 Run-time alternatives 

Pipeline hazards 37 
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Control hazard 38 

 A control hazard is associated to a PC modification 

instruction. 

 Next instruction is not known until current one completes. 

 

 Terminology: 

 Taken branch: PC is updated. 

 Not taken branch: PC is not updated. 

 

 Problem: 

 Pipeline assumes branch will not be taken. 

 What if, after ID, we find out branch needs to be taken? 
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Alternatives in control hazards 39 

 Compile-time: Fixed for all program execution. 

 Software may try to minimize impact if it knows 

hardware behavior. 

 Compiler can do this job. 

 

 Run-time: Variable behavior during program 

execution. 

 Tries to predict what software will do. 
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Control hazards: Static solutions 40 

 Alternatives: 

 Pipeline freezing. 

 Fixed prediction. 

 Always not taken. 

 Always taken. 

 Delayed branching. 

 

 In many cases the compiler needs to know what will 

be done to reduce negative impacts. 
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Pipeline Freezing  41 

 Idea: If current instruction is a branch stop or flush 

subsequent instructions from the pipeline until target 

is known. 

 Run-time penalty is known. 

 Software (compiler) cannot do anything. 

 

 Branch target is known in ID stage 

 Repeat next instruction FETCH. 
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FETCH repetition 42 

Branch Instr. 
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Fixed prediction: not-taken 43 

 Idea: Assume branch will be not-taken. 

 Avoids updating processor state until branch not taken 

is confirmed. 

 If branch is taken, subsequent instructions are retired 

from pipeline and next instruction is fetched from 

branch target. 

 Transforms instructions in NOPs. 

 

 Compiler task: 

Organize code setting most frequent option as not-

taken and inverting condition if needed. 
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Fixed prediction: not-taken 44 
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Fixed prediction: taken 45 

 Idea: Assume branch will be taken. 

 As soon as branch is decoded and target is computed, 

target instructions start to be fetched. 

 In a 5-stages pipeline does not provide improvements. 

 Target address not known until branch decision is made. 

 Useful in processors with complex and slow conditions. 

 

 Compiler task: 

Organize code setting most frequent option as taken 

and inverting condition if needed. 
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Delayed branching 46 

 Idea: Branch happens after executing n subsequent 

instructions to branch instruction. 

 In 5-stages pipeline: 1 delay slot. 

Branch instruction 
Instruction suc1 

Instruction suc2 

… 
Instruction sucn 

Conditional instruction 

N-length delay 
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Delayed branching 47 

Branch Instruction 
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Delayed branching: Compiler 48 

 DADD R1, R2, R3 
 BEQZ R2, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

Delay slot 

LABEL: DADD R1, R2, R3 
 XOR R5, R6, R7 
 BEQZ R5, LABEL 
 
 AND R8, R9, R10 

Delay slot 

 DADD R1, R2, R3 
 BEQZ R1, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

Delay slot 

 DADD R1, R2, R3 
 BEQZ R2, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

DADD R1, R2, R3 

LABEL: DADD R1, R2, R3 
LABEL: XOR R5, R6, R7 
 BEQZ R5, LABEL 
 
 AND R8, R9, R10 

DADD R1, R2, R3 

 DADD R1, R2, R3 
 BEQZ R1, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

XOR R5, R6, R7 

Preferred XOR cannot move to delay slot 

due to data dependency 

Only if R5 is not used after 

LABEL 

Computer Architecture - 2014 - J. Daniel García 



Delayed branching 49 

 Compiler effectiveness for the 1-slot case: 

 Fills around 60% slots. 

 Around 80% instructions executed in slots are useful for 

computation. 

 Around 50% slots filled usefully. 

 

 With deeper pipelines and multiple issue more slots 

are needed. 

 Need to move to more popular dynamic approaches. 
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Pipeline performance with branch 

fixed prediction 
50 

 Branch stalls number depends on: 

 Branch frequency. 

 Branch penalty. 

penaltybranch   frequency branch   branches from cycles stall 

penaltybranch  frequency branch   1

depth pipeline


S
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Example 51 

 MIPS R4000 (deeper pipeline). 

 3 stages before knowing branch target. 

 1 additional stage to evaluate condition. 

 Assuming no data stalls in comparisons. 

 Branch frequency: 

 Unconditional branch: 4%. 

 Conditional branch, not-taken: 6% 

 Conditional branch, taken: 10% 

 

Branch scheme Penalty 

Unconditional 

Penalty  

Not-taken 

Penalty  

Taken 

Flush pipeline 2 3 3 

Predict taken 2 3 2 

Predict not-taken 2 0 3 
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Solution 52 

Branch scheme Unconditional 

Branch 

Branch not-taken Branch taken Total 

Frequency 4% 6% 10% 20% 

Flush pipeline 0.04 x 2 = 0.08 0.06 x 3=0.18 0.10 x 3=0.30 0.56 

Predict taken 0.04 x 2 = 0.08 0.06 x 3 = 0.18 0.10 x 2 = 0.20 0.46 

Predict not-taken 0.04 x 2 = 0.08 0.06 x 0 = 0.00 0.10 x 3 = 0.30 0.38 

Contribution over ideal CPI 

Speedup of predicting taken 

over flushing pipeline. 

Speedup of predicting not-taken 

over flushing pipeline 

068.1
46.01

56.01





S 130.1

38.01

56.01





S
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Structural hazards 

Data hazards 

Control hazards 

 Compile-time alternatives 

 Run-time alternatives 

Pipeline hazards 53 
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Branching and run-time 54 

 Each branch is strongly biased: 

 Either it is taken most of the time, 

Or it is not taken most of the time. 

 

 Prediction based on execution profile: 

 Run once to collect statistics. 

 Collected information used to modify code and take 

advantage of information. 
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Prediction with execution profile 55 

 SPEC92: Branch frequency  3% a 24% 

 Floating point. 

 Missprediction rate. Average: 9%. Standard deviation: 4% 

 Integer. 
 Missprediction rate. Average: 15%. Standard deviation: 5% 

Floating point Integer 
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Dynamic prediction: BHT 56 

 Branch History Table: 

 Index: Lower portion of branch instruction address (PC). 

 Value: 1 bit (branch taken or not last time). 

 

 Improvement: Use more bits to increase precision. 
T 

T NT 

NT 

Predict Taken (11) 

Predict Not  

Taken (01) 

Predict Taken (10) 

Predict Not  

Taken (00) T 

NT 
T 

NT 
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BHT: Precision 57 

 Misspredictions: 

Wrongly predict branch outcome. 

 History of different branch in table entry. 

 BHT results of 2 bits en 4K entries: 
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Branch dynamic prediction 58 

 Why does branch prediction work? 

 Algorithms exhibits regularities. 

 Data structures exhibit regularities. 

 

 Is dynamic prediction better than static prediction? 

 It looks like. 

 There is a small amount of important branches in 

programs with dynamic behavior. 
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Multi-cycle operations 59 
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Floating point operations 60 

 Floating point operations in a single cycle? 

 A extremely long clock cycle. 

 Impact on global performance. 

 FPU control logic very complex. 

 Enormous amount of logic in FP units. 

 

 Alternative: Pipelining floating point unit. 

 Execution stage is repeated several times. 

Multiple functional units in EX. 

 Example: Integer unit, FP and integer multiplier, FP adder, FP 

and  integer divider. 
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Pipelining and floating point 61 

 EX stage may have a duration more than 1 clock 

cycle. 

IF ID MEM WB 

EX 
Unidad entera 

EX 
Multiplicación int/FP 

EX 
Sumador FP 

EX 
Divisor int/FP 
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Latencies and initiation interval 62 

 Latency: Number of cycles between an instruction 
producing a result and an instruction using that 
result. 

 

 Initiation interval: Number of cycles between two 
instructions using the same functional units. 

Operation Latency Initiation Interval 

ALU entera 0 1 

Loads 1 1 

FP addition 3 1 

FP multiplication 6 1 

FP division 24 25 
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 Pipelined architectures require higher memory bandwidth. 

 

 Pipeline hazards lead to stalls. 

 Performance degradation. 

 

 Stalls due to data hazards may be mitigated with compiler 
techniques. 

 

 Stalls due to control hazards may be reduced with: 

 Compile-time alternatives. 

 Run-time alternatives. 

 

 Multi-cycle operations allow for shorter clock cycles. 
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 Computer Architecture. A Quantitative Approach. 

Fifth Edition. 

Hennessy y Patterson. 

Sections C.1, C2 y C5. 

 

 Recommended exercises: 

 C.1, C.2, C.3, C.4, C.5 
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