
Grupo de Arquitectura de Computadores,

Comunicaciones y Sistemas

COMPUTER

ARCHITECTURE

Instruction Level Parallelism Exploitation

Contents 2

 Introduction to pipelining.

 Hazards.

 Structural hazards.

 Data hazards

 Control hazards.

 Compile-time alternatives.

 Run-time alternatives

 Multi-cycle operations.

Computer Architecture - 2014 - J. Daniel García

Introduction to pipelining 3

Computer Architecture - 2014 - J. Daniel García

Pipeline 4

 Implementation technique: Multiple instructions

overlap their execution over time.

 A costly operation is divided into several simpler sub-

operations.

 Sub-operation execution in stages.

 Effects:

 Throughput is increased.

 Latency does not decrease.

Computer Architecture - 2014 - J. Daniel García

Pipeline 5

Cycle1

Cycle 2

Cycle 3

Cycle 4

IF1

IF2 ID1

ID2 EX1 IF3

ID3 EX2 IF4 M1

Cycle 5

Cycle 6

Cycle 7

Cycle 8

IF5

IF6 ID5

ID6 EX5 IF7

ID7 EX6 IF8 M5

ID4 EX3 M2

EX4 M3

M4

W1

W2

W3

W4

Filling the pipeline

Latency 5 cycles

Throughput (ideal)  1 instruction per cycle

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 6

 Instruction Fetch (IF)

 Send PC value to memory.

 Fetch current instruction.

 Update PC (e.g. add 4).

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 7

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
em

ory

R
eg F

ile

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
d
d
e
r Zero?

Next SEQ PC

A
d
d
ress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 8

 Instruction Decode (ID)

 Decode current instruction.

 Read referenced source registers values.

 Perform equality test on register values.

 Sign-extend offset field of instruction.

 Compute possible branch target (offset + incremented

PC).

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
em

ory

R
eg F

ile

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
d
d
e
r Zero?

Next SEQ PC

A
d
d
ress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 10

 Execution / Effective Address(EX)

 ALU operates on operands:

Memory reference: ALU adds base register and offset to

form effective address.

 Register-Register: ALU performs operation o values from

register file.

 Register-Immediate: ALU performs operation on value from

register file and sign extended immediate.

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 11

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
em

ory

R
eg F

ile

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
d
d
e
r Zero?

Next SEQ PC

A
d
d
ress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 12

 Memory Access (MEM)

 Load instructions:

 Read using effective address computed in EX.

 Store instructions:

Write data from second register read from register file in ID

into effective address computed in EX.

 Write-back (WB)

Write result (from memory or ALU) into register file.

Computer Architecture - 2014 - J. Daniel García

Pipeline stages 13

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
em

ory

R
eg F

ile

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
d
d
e
r Zero?

Next SEQ PC

A
d
d
ress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

Computer Architecture - 2014 - J. Daniel García

Pipeline over time 14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Computer Architecture - 2014 - J. Daniel García

Pipeline effects 15

 A n-depth pipeline, has n times the needed
bandwidth compared to the non-pipelined version
when clock rate is the same.

 Solution: Caching, caching, caching, …

 Separation into data and instruction caches
suppresses some memory conflicts.

 Instructions in the pipeline should not try to use the
same resource at the same time.

 Solution: Introduce registers at every stage boundary.

Computer Architecture - 2014 - J. Daniel García

Stages communication 16

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
em

ory

R
eg F

ile

M
U

X
 M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF
/ID

ID
/E

X

M
E

M
/W

B

E
X

/M
E

M

4

A
d
d
er

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
d
d
ress

RS1

RS2

Imm

M
U

X

Computer Architecture - 2014 - J. Daniel García

Example 17

 Non-pipelined processor:

 Clock cycle: 1ns

 ALU operations (40%) and branching (20%): 4 cycles.

Memory operations (40%): 5 cycles.

 Pipeline overhead: 0.2 ns

 ¿Which is the pipelined version speedup?

 

7.3
2.1

4.4

2.01

4.454.046.01CPIcycleclock







ns

ns
S

nsnst

nsnst

pipeline

orig

Computer Architecture - 2014 - J. Daniel García

Structural hazards

Data hazards

Control hazards

Pipeline hazards 18

Computer Architecture - 2014 - J. Daniel García

Hazards 19

 Hazard: Situation preventing next instruction to start at
the expected clock cycle.

 Hazards reduce pipelined architectures performance.

 Hazards:

 Structural hazard.

 Data hazard.

 Control hazard.

 Simple approach for hazards:

 Stall the instruction flow.

 Already started instructions will continue.

Computer Architecture - 2014 - J. Daniel García

Structural hazard 20

 When the processor cannot support all possible
instruction sequences.

 Two pipeline stages need to use the same resource at
the same cycle.

 Reasons:

 Functional units which are not fully pipelined.

 Functional units which are not duplicated.

 These hazards can be avoided at the cost of a
more expensive hardware.

Computer Architecture - 2014 - J. Daniel García

Impact of stalls 21

 Pipeline speedup.

 Pipeline ideal CPI is 1.

 Need to add stall cycles per instruction.

 Non pipelined processor:

 CPI=1, but clock cycle much higher.

 Clock cycle is N times pipelined cycle.

 N is pipeline depth

pipelinedpipelined

pipelinednon pipelinednon

cycle

cycle

pipelined instr time average

pipelinednon instr time average






CPI

CPI
S

ninstructioper stalls 1

depth pipeline


S

Computer Architecture - 2014 - J. Daniel García

Structural hazard: Example 22

LOAD

Instr i+1

Instr i+2

Instr i+3

Instr i+4

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg

A
L
U

DMem Ifetch Reg

Assuming single port

memory

Computer Architecture - 2014 - J. Daniel García

Structural hazard: Example 23

LOAD

Instr i+1

Instr i+2

Instr i+3

Instr i+4

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Assuming single port

memory

Computer Architecture - 2014 - J. Daniel García

Example 24

 Two alternative designs:

 A: No structural hazard. Clock cycle 1ns.

 B: With structural hazards. Clock cycle 0.9 ns.

 Data access instructions with hazards: 30%.

 ¿Which is the fastest alterantive?

   nscycleCPIAt

nsnscycleCPIAt

inst

inst

26.19.04.19.0114.016.0)(

111)(





Computer Architecture - 2014 - J. Daniel García

Structural hazards

Data hazards

Control hazards

Pipeline hazards 25

Computer Architecture - 2014 - J. Daniel García

Riesgos de datos 26

 A data hazard happens when the pipeline modifies

the read/write access order to operands.

I1: DADD R1, R2, R3
I2: DSUB R4, R1, R5
I3: AND R6, R1, R7
I4: OR R8, R1, R9
I5: XOR R10, R1, R11

 I2 reads R1 before I1 modifies it.

 I3 reads R1 before I1 modifies it.

 I4 gets the right value

 Register file read in second

half of cycle.

 I5 gets right value.

Computer Architecture - 2014 - J. Daniel García

Data hazard 27

DADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

Reg

A
L
U

DMem Ifetch Reg

IF ID/RF EX MEM WB

Computer Architecture - 2014 - J. Daniel García

Stalls in data hazards 28

DADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Computer Architecture - 2014 - J. Daniel García

Data hazard: RAW 29

 Read After Write.

 Instruction i+1 tries to read a datum before instruction i
writes it.

i: add r1, r2, r3
i+1: sub r4, r1, r3

 If there is a data dependency:

 Instructions can neither be executed in parallel nor
overlap.

 Solutions:

 Hardware detection.

 Compiler control.
Computer Architecture - 2014 - J. Daniel García

Data hazard: WAR 30

 Write After Read:

 Instruction i+1 modifies operand before instruction i reads
it.

i: sub r4, r1, r3
i+1: add r1, r2, r3
i+2: mul r6, r1, r7

 Also known as anti-dependency (compiler domain).

 Name reuse.

 Cannot happen in MIPS with 5-stages pipeline.

 All instructions with 5 stages.

 Reads are always in stage 2.

 Writes are always in stage 5.

Computer Architecture - 2014 - J. Daniel García

Data hazards: WAW 31

 Write After Write:

 Instruction i+1 modifies operand before instruction i
modifies it.

i: sub r1, r4, r3
i+1: add r1, r2, r3
i+2: mul r6, r1, r7

 Also known as output dependency (compiler domain).

 Name reuse.

 Cannot happen in MIPS with 5-stages pipeline.

 All instructions with 5 stages.

 Writes are always in stage 5.

Computer Architecture - 2014 - J. Daniel García

Solutions to data hazards 32

 RAW dependencies:

 Forwarding.

 WAR y WAW dependencies:

 Register renaming:

 Statically by compiler.

 Dynamically by hardware.

Computer Architecture - 2014 - J. Daniel García

Forwarding 33

 Technique to avoid some data stalls.

 Basic idea:

 No need to wait until result is written into register file.

 Result is already in pipeline registers.

 Use this value instead of the one from the register file.

 Implementation:

 Results from EX and MEM stages written into ALU input
registers.

 Forwarding logic selects between real input and
forwarding register.

Computer Architecture - 2014 - J. Daniel García

Forwarding 34

DADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Computer Architecture - 2014 - J. Daniel García

Forwarding limitations 35

 Not every hazard can be avoided with forwarding.

 You cannot travel backwards in time!

I1: LD R1, (0)R2
I2: DSUB R4, R1, R5
I3: AND R6, R1, R7
I4: OR R8, R1, R9
I5: XOR R10, R1, R11

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

In this case a stall is

needed

Computer Architecture - 2014 - J. Daniel García

Memory access stalls 36

LD R1, 0(R2)

DSUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

A
LU

DM IM Reg Reg

Computer Architecture - 2014 - J. Daniel García

Structural hazards

Data hazards

Control hazards

 Compile time alternatives

 Run-time alternatives

Pipeline hazards 37

Computer Architecture - 2014 - J. Daniel García

Control hazard 38

 A control hazard is associated to a PC modification

instruction.

 Next instruction is not known until current one completes.

 Terminology:

 Taken branch: PC is updated.

 Not taken branch: PC is not updated.

 Problem:

 Pipeline assumes branch will not be taken.

 What if, after ID, we find out branch needs to be taken?

Computer Architecture - 2014 - J. Daniel García

Alternatives in control hazards 39

 Compile-time: Fixed for all program execution.

 Software may try to minimize impact if it knows

hardware behavior.

 Compiler can do this job.

 Run-time: Variable behavior during program

execution.

 Tries to predict what software will do.

Computer Architecture - 2014 - J. Daniel García

Control hazards: Static solutions 40

 Alternatives:

 Pipeline freezing.

 Fixed prediction.

 Always not taken.

 Always taken.

 Delayed branching.

 In many cases the compiler needs to know what will

be done to reduce negative impacts.

Computer Architecture - 2014 - J. Daniel García

Pipeline Freezing 41

 Idea: If current instruction is a branch stop or flush

subsequent instructions from the pipeline until target

is known.

 Run-time penalty is known.

 Software (compiler) cannot do anything.

 Branch target is known in ID stage

 Repeat next instruction FETCH.

Computer Architecture - 2014 - J. Daniel García

FETCH repetition 42

Branch Instr.

Instr. i+1

Instr. i+2

Instr. i+3

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg IM

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

IF repeated

Computer Architecture - 2014 - J. Daniel García

Fixed prediction: not-taken 43

 Idea: Assume branch will be not-taken.

 Avoids updating processor state until branch not taken

is confirmed.

 If branch is taken, subsequent instructions are retired

from pipeline and next instruction is fetched from

branch target.

 Transforms instructions in NOPs.

 Compiler task:

Organize code setting most frequent option as not-

taken and inverting condition if needed.

Computer Architecture - 2014 - J. Daniel García

Fixed prediction: not-taken 44

Branch Instr.

Instr. i+1

Branch target

Instr. i+1

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

IM Inactive

Computer Architecture - 2014 - J. Daniel García

Fixed prediction: taken 45

 Idea: Assume branch will be taken.

 As soon as branch is decoded and target is computed,

target instructions start to be fetched.

 In a 5-stages pipeline does not provide improvements.

 Target address not known until branch decision is made.

 Useful in processors with complex and slow conditions.

 Compiler task:

Organize code setting most frequent option as taken

and inverting condition if needed.

Computer Architecture - 2014 - J. Daniel García

Delayed branching 46

 Idea: Branch happens after executing n subsequent

instructions to branch instruction.

 In 5-stages pipeline: 1 delay slot.

Branch instruction
Instruction suc1

Instruction suc2

…
Instruction sucn

Conditional instruction

N-length delay

Computer Architecture - 2014 - J. Daniel García

Delayed branching 47

Branch Instruction

Delayed instruction

Next or target instruction

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Reg A
LU

DM IM Reg

Computer Architecture - 2014 - J. Daniel García

Delayed branching: Compiler 48

 DADD R1, R2, R3
 BEQZ R2, LABEL

 XOR R5, R6, R7
LABEL: AND R8, R9, R10

Delay slot

LABEL: DADD R1, R2, R3
 XOR R5, R6, R7
 BEQZ R5, LABEL

 AND R8, R9, R10

Delay slot

 DADD R1, R2, R3
 BEQZ R1, LABEL

 XOR R5, R6, R7
LABEL: AND R8, R9, R10

Delay slot

 DADD R1, R2, R3
 BEQZ R2, LABEL

 XOR R5, R6, R7
LABEL: AND R8, R9, R10

DADD R1, R2, R3

LABEL: DADD R1, R2, R3
LABEL: XOR R5, R6, R7
 BEQZ R5, LABEL

 AND R8, R9, R10

DADD R1, R2, R3

 DADD R1, R2, R3
 BEQZ R1, LABEL

 XOR R5, R6, R7
LABEL: AND R8, R9, R10

XOR R5, R6, R7

Preferred XOR cannot move to delay slot

due to data dependency

Only if R5 is not used after

LABEL

Computer Architecture - 2014 - J. Daniel García

Delayed branching 49

 Compiler effectiveness for the 1-slot case:

 Fills around 60% slots.

 Around 80% instructions executed in slots are useful for

computation.

 Around 50% slots filled usefully.

 With deeper pipelines and multiple issue more slots

are needed.

 Need to move to more popular dynamic approaches.

Computer Architecture - 2014 - J. Daniel García

Pipeline performance with branch

fixed prediction
50

 Branch stalls number depends on:

 Branch frequency.

 Branch penalty.

penaltybranch frequency branch branches from cycles stall 

penaltybranch frequency branch 1

depth pipeline


S

Computer Architecture - 2014 - J. Daniel García

Example 51

 MIPS R4000 (deeper pipeline).

 3 stages before knowing branch target.

 1 additional stage to evaluate condition.

 Assuming no data stalls in comparisons.

 Branch frequency:

 Unconditional branch: 4%.

 Conditional branch, not-taken: 6%

 Conditional branch, taken: 10%

Branch scheme Penalty

Unconditional

Penalty

Not-taken

Penalty

Taken

Flush pipeline 2 3 3

Predict taken 2 3 2

Predict not-taken 2 0 3

Computer Architecture - 2014 - J. Daniel García

Solution 52

Branch scheme Unconditional

Branch

Branch not-taken Branch taken Total

Frequency 4% 6% 10% 20%

Flush pipeline 0.04 x 2 = 0.08 0.06 x 3=0.18 0.10 x 3=0.30 0.56

Predict taken 0.04 x 2 = 0.08 0.06 x 3 = 0.18 0.10 x 2 = 0.20 0.46

Predict not-taken 0.04 x 2 = 0.08 0.06 x 0 = 0.00 0.10 x 3 = 0.30 0.38

Contribution over ideal CPI

Speedup of predicting taken

over flushing pipeline.

Speedup of predicting not-taken

over flushing pipeline

068.1
46.01

56.01





S 130.1

38.01

56.01





S

Computer Architecture - 2014 - J. Daniel García

Structural hazards

Data hazards

Control hazards

 Compile-time alternatives

 Run-time alternatives

Pipeline hazards 53

Computer Architecture - 2014 - J. Daniel García

Branching and run-time 54

 Each branch is strongly biased:

 Either it is taken most of the time,

Or it is not taken most of the time.

 Prediction based on execution profile:

 Run once to collect statistics.

 Collected information used to modify code and take

advantage of information.

Computer Architecture - 2014 - J. Daniel García

12%

22%

18%

11% 12%

4%
6%

9% 10%

15%

0%

5%

10%

15%

20%

25%

M
is

p
re

d
ic

ti
o

n

R

a
te

Prediction with execution profile 55

 SPEC92: Branch frequency  3% a 24%

 Floating point.

 Missprediction rate. Average: 9%. Standard deviation: 4%

 Integer.
 Missprediction rate. Average: 15%. Standard deviation: 5%

Floating point Integer

Computer Architecture - 2014 - J. Daniel García

Dynamic prediction: BHT 56

 Branch History Table:

 Index: Lower portion of branch instruction address (PC).

 Value: 1 bit (branch taken or not last time).

 Improvement: Use more bits to increase precision.
T

T NT

NT

Predict Taken (11)

Predict Not

Taken (01)

Predict Taken (10)

Predict Not

Taken (00) T

NT
T

NT

Computer Architecture - 2014 - J. Daniel García

BHT: Precision 57

 Misspredictions:

Wrongly predict branch outcome.

 History of different branch in table entry.

 BHT results of 2 bits en 4K entries:

18%

5%

12%
10%

9%

5%

9% 9%

0%
1%

0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

eq
nt

ot
t

es
pr

es
so gc

c li

sp
ic
e

do
du

c

sp
ic
e

fp
pp

p

m
at

rix
30

0

na
sa

7

M
is

p
re

d
ic

ti
o

n
 R

a
te

Computer Architecture - 2014 - J. Daniel García

Branch dynamic prediction 58

 Why does branch prediction work?

 Algorithms exhibits regularities.

 Data structures exhibit regularities.

 Is dynamic prediction better than static prediction?

 It looks like.

 There is a small amount of important branches in

programs with dynamic behavior.

Computer Architecture - 2014 - J. Daniel García

Multi-cycle operations 59

Computer Architecture - 2014 - J. Daniel García

Floating point operations 60

 Floating point operations in a single cycle?

 A extremely long clock cycle.

 Impact on global performance.

 FPU control logic very complex.

 Enormous amount of logic in FP units.

 Alternative: Pipelining floating point unit.

 Execution stage is repeated several times.

Multiple functional units in EX.

 Example: Integer unit, FP and integer multiplier, FP adder, FP

and integer divider.

Computer Architecture - 2014 - J. Daniel García

Pipelining and floating point 61

 EX stage may have a duration more than 1 clock

cycle.

IF ID MEM WB

EX
Unidad entera

EX
Multiplicación int/FP

EX
Sumador FP

EX
Divisor int/FP

Computer Architecture - 2014 - J. Daniel García

Latencies and initiation interval 62

 Latency: Number of cycles between an instruction
producing a result and an instruction using that
result.

 Initiation interval: Number of cycles between two
instructions using the same functional units.

Operation Latency Initiation Interval

ALU entera 0 1

Loads 1 1

FP addition 3 1

FP multiplication 6 1

FP division 24 25

Computer Architecture - 2014 - J. Daniel García

Summary 63

 Pipelined architectures require higher memory bandwidth.

 Pipeline hazards lead to stalls.

 Performance degradation.

 Stalls due to data hazards may be mitigated with compiler
techniques.

 Stalls due to control hazards may be reduced with:

 Compile-time alternatives.

 Run-time alternatives.

 Multi-cycle operations allow for shorter clock cycles.

Computer Architecture - 2014 - J. Daniel García

References 64

 Computer Architecture. A Quantitative Approach.

Fifth Edition.

Hennessy y Patterson.

Sections C.1, C2 y C5.

 Recommended exercises:

 C.1, C.2, C.3, C.4, C.5

Computer Architecture - 2014 - J. Daniel García

