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Introduction to pipelining 3 
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Pipeline 4 

 Implementation technique: Multiple instructions 

overlap their execution over time. 

 A costly operation is divided into several simpler sub-

operations. 

 Sub-operation execution in stages. 

 Effects: 

 Throughput is increased. 

 Latency does not decrease. 
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Pipeline 5 
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Pipeline stages 6 

 Instruction Fetch (IF) 

 Send PC value to memory. 

 Fetch current instruction. 

 Update PC (e.g. add 4). 
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Pipeline stages 7 
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Pipeline stages 8 

 Instruction Decode (ID) 

 Decode current instruction. 

 Read referenced source registers values. 

 Perform equality test on register values. 

 Sign-extend offset field of instruction. 

 Compute possible branch target (offset + incremented 

PC). 
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Pipeline stages 9 
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Pipeline stages 10 

 Execution / Effective Address(EX) 

 ALU operates on operands: 

Memory reference: ALU adds base register and offset to 

form effective address. 

 Register-Register: ALU performs operation o values from 

register file. 

 Register-Immediate: ALU performs operation on value from 

register file and sign extended immediate. 
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Pipeline stages 11 
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Pipeline stages 12 

 Memory Access (MEM) 

 Load instructions: 

 Read using effective address computed in EX. 

 Store instructions: 

Write data from second register read from register file in ID 

into effective address computed in EX. 

 

 Write-back (WB) 

Write result (from memory or ALU) into register file. 
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Pipeline stages 13 
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Pipeline over time 14 
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Pipeline effects 15 

 A n-depth pipeline, has n times the needed 
bandwidth compared to the non-pipelined version 
when clock rate is the same. 

 Solution: Caching, caching, caching, … 

 

 Separation into data and instruction caches 
suppresses some memory conflicts. 

 

 Instructions in the pipeline should not try to use the 
same resource at the same time. 

 Solution: Introduce registers at every stage boundary. 
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Stages communication 16 
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Example 17 

 Non-pipelined processor: 

 Clock cycle: 1ns 

 ALU operations (40%) and branching (20%): 4 cycles. 

Memory operations (40%): 5 cycles. 

 Pipeline overhead: 0.2 ns 

 ¿Which is the pipelined version speedup? 
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Structural hazards 

Data hazards 

Control hazards 

Pipeline hazards 18 
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Hazards 19 

 Hazard: Situation preventing next instruction to start at 
the expected clock cycle. 

 Hazards reduce pipelined architectures performance. 

 

 Hazards: 

 Structural hazard. 

 Data hazard. 

 Control hazard. 

 

 Simple approach for hazards: 

 Stall the instruction flow. 

 Already started instructions will continue. 
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Structural hazard 20 

 When the processor cannot support all possible 
instruction sequences. 

 Two pipeline stages need to use the same resource at 
the same cycle. 

 

 Reasons: 

 Functional units which are not fully pipelined. 

 Functional units which are not duplicated. 

 

 These hazards can be avoided at the cost of a 
more expensive hardware. 
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Impact of stalls 21 

 Pipeline speedup. 

 

 

 Pipeline ideal CPI is 1. 

 Need to add stall cycles per instruction. 

 Non pipelined processor: 

 CPI=1, but clock cycle much higher. 

 Clock cycle is N times pipelined cycle. 

 N is pipeline depth 
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Structural hazard: Example 22 
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Structural hazard: Example 23 
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Example 24 

 Two alternative designs: 

 A: No structural hazard. Clock cycle 1ns. 

 B: With structural hazards. Clock cycle 0.9 ns. 

 Data access instructions with hazards: 30%. 

 

 ¿Which is the fastest alterantive? 
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Structural hazards 

Data hazards 

Control hazards 

Pipeline hazards 25 
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Riesgos de datos 26 

 A data hazard happens when the pipeline modifies 

the read/write access order to operands. 

I1: DADD R1, R2, R3 
I2: DSUB R4, R1, R5 
I3: AND R6, R1, R7 
I4: OR R8, R1, R9 
I5: XOR R10, R1, R11 

 I2 reads R1 before I1 modifies it. 

 I3 reads R1 before I1 modifies it. 

 I4 gets the right value 

 Register file read in second 

half of cycle. 

 I5 gets right value. 

Computer Architecture - 2014 - J. Daniel García 



Data hazard 27 
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Stalls in data hazards 28 
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Data hazard: RAW 29 

 Read After Write. 

 Instruction i+1 tries to read a datum before instruction i 
writes it. 

i: add r1, r2, r3 
i+1: sub r4, r1, r3 

 If there is a data dependency: 

 Instructions can neither be executed in parallel nor 
overlap. 

 Solutions: 

 Hardware detection. 

 Compiler control. 
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Data hazard: WAR 30 

 Write After Read: 

 Instruction i+1 modifies operand before instruction i reads 
it. 

i: sub r4, r1, r3 
i+1: add r1, r2, r3 
i+2: mul r6, r1, r7 

 Also known as anti-dependency (compiler domain). 

 Name reuse. 

 Cannot happen in MIPS with 5-stages pipeline. 

 All instructions with 5 stages. 

 Reads are always in stage 2. 

 Writes are always in stage 5. 
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Data hazards: WAW 31 

 Write After Write: 

 Instruction i+1 modifies operand before instruction i 
modifies it. 

i: sub r1, r4, r3 
i+1: add r1, r2, r3 
i+2: mul r6, r1, r7 

 Also known as output dependency (compiler domain). 

 Name reuse. 

 Cannot happen in MIPS with 5-stages pipeline. 

 All instructions with 5 stages. 

 Writes are always in stage 5. 
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Solutions to data hazards 32 

 RAW dependencies: 

 Forwarding. 

 

 WAR y WAW dependencies: 

 Register renaming: 

 Statically by compiler. 

 Dynamically by hardware. 
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Forwarding 33 

 Technique to avoid some data stalls. 

 Basic idea: 

 No need to wait until result is written into register file. 

 Result is already in pipeline registers. 

 Use this value instead of the one from the register file. 

 

 Implementation: 

 Results from EX and MEM stages written into ALU input 
registers. 

 Forwarding logic selects between real input and 
forwarding register. 
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Forwarding 34 
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Forwarding limitations 35 

 Not every hazard can be avoided with forwarding. 

 You cannot travel backwards in time! 

I1: LD R1, (0)R2 
I2: DSUB R4, R1, R5 
I3: AND R6, R1, R7 
I4: OR R8, R1, R9 
I5: XOR R10, R1, R11 
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Memory access stalls 36 
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Structural hazards 

Data hazards 

Control hazards 

 Compile time alternatives 

 Run-time alternatives 

Pipeline hazards 37 
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Control hazard 38 

 A control hazard is associated to a PC modification 

instruction. 

 Next instruction is not known until current one completes. 

 

 Terminology: 

 Taken branch: PC is updated. 

 Not taken branch: PC is not updated. 

 

 Problem: 

 Pipeline assumes branch will not be taken. 

 What if, after ID, we find out branch needs to be taken? 
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Alternatives in control hazards 39 

 Compile-time: Fixed for all program execution. 

 Software may try to minimize impact if it knows 

hardware behavior. 

 Compiler can do this job. 

 

 Run-time: Variable behavior during program 

execution. 

 Tries to predict what software will do. 
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Control hazards: Static solutions 40 

 Alternatives: 

 Pipeline freezing. 

 Fixed prediction. 

 Always not taken. 

 Always taken. 

 Delayed branching. 

 

 In many cases the compiler needs to know what will 

be done to reduce negative impacts. 
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Pipeline Freezing  41 

 Idea: If current instruction is a branch stop or flush 

subsequent instructions from the pipeline until target 

is known. 

 Run-time penalty is known. 

 Software (compiler) cannot do anything. 

 

 Branch target is known in ID stage 

 Repeat next instruction FETCH. 
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FETCH repetition 42 
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Fixed prediction: not-taken 43 

 Idea: Assume branch will be not-taken. 

 Avoids updating processor state until branch not taken 

is confirmed. 

 If branch is taken, subsequent instructions are retired 

from pipeline and next instruction is fetched from 

branch target. 

 Transforms instructions in NOPs. 

 

 Compiler task: 

Organize code setting most frequent option as not-

taken and inverting condition if needed. 
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Fixed prediction: not-taken 44 
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Fixed prediction: taken 45 

 Idea: Assume branch will be taken. 

 As soon as branch is decoded and target is computed, 

target instructions start to be fetched. 

 In a 5-stages pipeline does not provide improvements. 

 Target address not known until branch decision is made. 

 Useful in processors with complex and slow conditions. 

 

 Compiler task: 

Organize code setting most frequent option as taken 

and inverting condition if needed. 
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Delayed branching 46 

 Idea: Branch happens after executing n subsequent 

instructions to branch instruction. 

 In 5-stages pipeline: 1 delay slot. 

Branch instruction 
Instruction suc1 

Instruction suc2 

… 
Instruction sucn 

Conditional instruction 
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Delayed branching 47 
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Delayed branching: Compiler 48 

 DADD R1, R2, R3 
 BEQZ R2, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

Delay slot 

LABEL: DADD R1, R2, R3 
 XOR R5, R6, R7 
 BEQZ R5, LABEL 
 
 AND R8, R9, R10 

Delay slot 

 DADD R1, R2, R3 
 BEQZ R1, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

Delay slot 

 DADD R1, R2, R3 
 BEQZ R2, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

DADD R1, R2, R3 

LABEL: DADD R1, R2, R3 
LABEL: XOR R5, R6, R7 
 BEQZ R5, LABEL 
 
 AND R8, R9, R10 

DADD R1, R2, R3 

 DADD R1, R2, R3 
 BEQZ R1, LABEL 
 
 XOR R5, R6, R7 
LABEL: AND R8, R9, R10 

XOR R5, R6, R7 

Preferred XOR cannot move to delay slot 

due to data dependency 

Only if R5 is not used after 

LABEL 
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Delayed branching 49 

 Compiler effectiveness for the 1-slot case: 

 Fills around 60% slots. 

 Around 80% instructions executed in slots are useful for 

computation. 

 Around 50% slots filled usefully. 

 

 With deeper pipelines and multiple issue more slots 

are needed. 

 Need to move to more popular dynamic approaches. 
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Pipeline performance with branch 

fixed prediction 
50 

 Branch stalls number depends on: 

 Branch frequency. 

 Branch penalty. 

penaltybranch   frequency branch   branches from cycles stall 

penaltybranch  frequency branch   1

depth pipeline


S
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Example 51 

 MIPS R4000 (deeper pipeline). 

 3 stages before knowing branch target. 

 1 additional stage to evaluate condition. 

 Assuming no data stalls in comparisons. 

 Branch frequency: 

 Unconditional branch: 4%. 

 Conditional branch, not-taken: 6% 

 Conditional branch, taken: 10% 

 

Branch scheme Penalty 

Unconditional 

Penalty  

Not-taken 

Penalty  

Taken 

Flush pipeline 2 3 3 

Predict taken 2 3 2 

Predict not-taken 2 0 3 
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Solution 52 

Branch scheme Unconditional 

Branch 

Branch not-taken Branch taken Total 

Frequency 4% 6% 10% 20% 

Flush pipeline 0.04 x 2 = 0.08 0.06 x 3=0.18 0.10 x 3=0.30 0.56 

Predict taken 0.04 x 2 = 0.08 0.06 x 3 = 0.18 0.10 x 2 = 0.20 0.46 

Predict not-taken 0.04 x 2 = 0.08 0.06 x 0 = 0.00 0.10 x 3 = 0.30 0.38 

Contribution over ideal CPI 

Speedup of predicting taken 

over flushing pipeline. 

Speedup of predicting not-taken 

over flushing pipeline 

068.1
46.01

56.01





S 130.1

38.01

56.01





S
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Structural hazards 

Data hazards 

Control hazards 

 Compile-time alternatives 

 Run-time alternatives 

Pipeline hazards 53 
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Branching and run-time 54 

 Each branch is strongly biased: 

 Either it is taken most of the time, 

Or it is not taken most of the time. 

 

 Prediction based on execution profile: 

 Run once to collect statistics. 

 Collected information used to modify code and take 

advantage of information. 
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Prediction with execution profile 55 

 SPEC92: Branch frequency  3% a 24% 

 Floating point. 

 Missprediction rate. Average: 9%. Standard deviation: 4% 

 Integer. 
 Missprediction rate. Average: 15%. Standard deviation: 5% 

Floating point Integer 
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Dynamic prediction: BHT 56 

 Branch History Table: 

 Index: Lower portion of branch instruction address (PC). 

 Value: 1 bit (branch taken or not last time). 

 

 Improvement: Use more bits to increase precision. 
T 

T NT 

NT 
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BHT: Precision 57 

 Misspredictions: 

Wrongly predict branch outcome. 

 History of different branch in table entry. 

 BHT results of 2 bits en 4K entries: 
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Branch dynamic prediction 58 

 Why does branch prediction work? 

 Algorithms exhibits regularities. 

 Data structures exhibit regularities. 

 

 Is dynamic prediction better than static prediction? 

 It looks like. 

 There is a small amount of important branches in 

programs with dynamic behavior. 
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Multi-cycle operations 59 
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Floating point operations 60 

 Floating point operations in a single cycle? 

 A extremely long clock cycle. 

 Impact on global performance. 

 FPU control logic very complex. 

 Enormous amount of logic in FP units. 

 

 Alternative: Pipelining floating point unit. 

 Execution stage is repeated several times. 

Multiple functional units in EX. 

 Example: Integer unit, FP and integer multiplier, FP adder, FP 

and  integer divider. 
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Pipelining and floating point 61 

 EX stage may have a duration more than 1 clock 

cycle. 

IF ID MEM WB 

EX 
Unidad entera 

EX 
Multiplicación int/FP 

EX 
Sumador FP 

EX 
Divisor int/FP 
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Latencies and initiation interval 62 

 Latency: Number of cycles between an instruction 
producing a result and an instruction using that 
result. 

 

 Initiation interval: Number of cycles between two 
instructions using the same functional units. 

Operation Latency Initiation Interval 

ALU entera 0 1 

Loads 1 1 

FP addition 3 1 

FP multiplication 6 1 

FP division 24 25 
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Summary 63 

 Pipelined architectures require higher memory bandwidth. 

 

 Pipeline hazards lead to stalls. 

 Performance degradation. 

 

 Stalls due to data hazards may be mitigated with compiler 
techniques. 

 

 Stalls due to control hazards may be reduced with: 

 Compile-time alternatives. 

 Run-time alternatives. 

 

 Multi-cycle operations allow for shorter clock cycles. 
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 Recommended exercises: 
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