2º Grado de Matemáticas-Ing. Informática

Segundo Parcial Martes, 11 de diciembre de 2018

Apellidos:	PELLIDOS:		Nombre:	
DNI:	Grupo:			

DURACIÓN: 90 minutos.

Problema 1.(2 punto.)

- a) Expresa a $\sigma = (134)(12)(34)(24) \in S_5$ como producto de ciclos disjuntos. Calcula σ^{17} .
- a) $\sigma = (1243); \ \sigma^{17} = \sigma.$
- b) Decide, justificadamente, si la permutacione anterior σ y la permutación $\sigma'=(134)(12)(34)(24)(14)(12)$ son conjugadas.
 - a) $\sigma' = (1423)$; luego son conjugadas en S_5 porque ambas son de tipo 4+1.

Problema 2.(2 puntos.) Recuerda que $\sigma = (12345)$ pertenece a \mathbb{A}_5 por ser un ciclo de longitud impar. Recuerda también que el número total 5-ciclos en \mathbb{S}_5 es 4! = 24.

a) Calcula el subgrupos centralizador $C_{\mathbb{S}_5}((12345))$.

Como $(12345) \in C_{\mathbb{S}_5}((12345))$, y como sabemos que $[\mathbb{S}_5 : C_{\mathbb{S}_5}((12345))] = 24$, observamos que la inclusión $\langle (12345) \rangle \subset C_{\mathbb{S}_5}((12345))$ debe ser una igualdad.

b) Calcula el subgrupo $C_{\mathbb{A}_5}((12345))$.

 $C_{\mathbb{A}_5}((12345)) = C_{\mathbb{S}_5}((12345)) \cap \mathbb{A}_5 = \langle (12345) \rangle$ porque todo 5-ciclo está en \mathbb{A}_5 .

c) Indica cuántos conjugados tiene σ en \mathbb{A}_5 .

Hay $[\mathbb{A}_5:C_{\mathbb{S}_5}((12345))]=12$ conjugados.

Problema 3.(2 puntos.) Sea $\gamma: \mathbb{Z}/13\mathbb{Z} \to \mathbb{Z}/13\mathbb{Z}$, $\gamma(\overline{a}) = \overline{5}\overline{a}$.

a) Demuestra que $\gamma \in Aut(\mathbb{Z}/13\mathbb{Z})$ (demuestra que es un isomorfismo).

Como $\overline{5}$ tiene orden 13 en $\mathbb{Z}/13\mathbb{Z}$ se observa que γ es sobre, y en particular es un isomorfismo.

b) Calcula el orden de γ en el grupo $Aut(\mathbb{Z}/13\mathbb{Z})$.

 $Aut(\mathbb{Z}/13\mathbb{Z}) = U(\mathbb{Z}/13\mathbb{Z})$ (grupo de unidades), y se observa que $\overline{5}$ tiene orden 4 en dicho grupo.

c) Expresa al grupo abeliano $Aut(\mathbb{Z}/13\mathbb{Z})$ como producto de p-grupos cíclicos.

 $Aut(\mathbb{Z}/13\mathbb{Z}) = U(\mathbb{Z}/13\mathbb{Z})$ es un grupo abeliano de orden $12 = 2^2,3$, por tanto puede set $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, o bien $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. La primera opción se descarta porque contiene un elemento de orden 4.

Problema 4.(2 puntos.) Sea $G=Z/2Z\times Z/2Z$. Demuestra que la única estructura de producto semidirecto $G\times_{\alpha}Z/7Z$ es la trivial.

Recuerda que $Aut(Z/2Z \times Z/2Z) = S_3$, y que el único morfismo de grupos $Z/7Z \to S_3$ es el trivial.

Problema 5.(2 puntos) Decide justificadamente si es verdadero o falso.

a) Si dos subgrupos de \mathbb{S}_4 tienen order 3, entonces son conjugados.

Verdad: Un grupo de orden 3 en S_4 es un 3-grupo de Sylow. Por tanto son todos conjugados.

b) Sea p primo y sea G un grupo no abeliano de orden p^3 . El grupo G/Z(G) es isomorfo a $Z/pZ \times Z/pZ$.

Verdadero: Como G es un p-grupo su centro Z(G) es no trivial. Como G no es abeliano Z(G) tiene que se propio. Finalmente, como G/Z(G) no puede ser cíclico se concluye que $G/Z(G)=Z/pZ\times Z/pZ$.