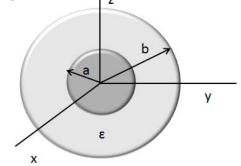
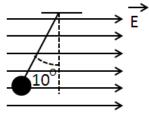
El problema se corregirá siempre que en el test se obtenga al menos 3 puntos.

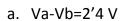
DATOS: Constante de Columb, $K=9.10^9$ N.m²/C²; permitividad del vacío $ε_0=8'85.10^{-12}$ C²/(N.m²); permeabilidad del espacio libre, $μ_0=4π.10^{-7}$ N/A². $\overrightarrow{u_x}$, $\overrightarrow{u_y}$, $\overrightarrow{u_z}$ los vectores unitarios en la dirección de los ejes cartesianos X,Y,Z.

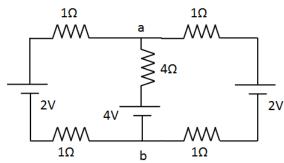

Carga del electrón=1'602 10⁻¹⁹ C; Gravedad: 9'8m/s²

TEST ELIMINATORIO (max 5 puntos):

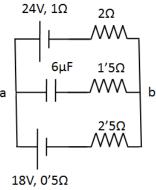

- 1. Una esfera metálica de radio a tiene una carga Q y está rodeada de una capa esférica dieléctrica cuyo radio interior es a y el exterior b. La permitividad de la capa es ϵ =4 ϵ _o. Calcular el campo eléctrico en la capa dieléctrica, esto es, a una distancia r del centro de la esfera con a<r
b | z
 - a. Er= Q/ $(4\pi \epsilon_0 r^2)$
- b. Er=Q/($16\pi \epsilon_0 r^2$)

c. Er=0

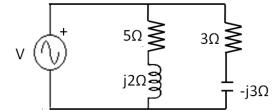

d. N.d.a.


- 2. Una lámina no conductora infinita tiene una densidad de carga σ =25nC/m² sobre un lado. ¿A qué distancia se encuentran separadas dos superficies equipotenciales cuyos potenciales difieren en 25V?
 - a. 6'34.10⁻³ m
- b. 17'7.10⁻³ m
- c. 15'28.10⁻³ m
- d. N.d.a.
- 3. Una esfera cargada eléctricamente se pone en presencia de un campo eléctrico uniforme E=5.10⁴ N/C, como se indica en la figura. Si la esfera tiene una masa de 1 gramo, el valor de la carga eléctrica neta de la esfera es:
 - a. -15'81 nC
 - b. -18'65 nC
 - c. -34'56 nC
 - d. N.d.a.

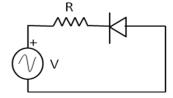
- 4. Si el flujo de inducción magnética, que pasa por la bobina de N espiras de la figura, cambia de ϕ_1 a ϕ_2 , la carga Q que pasa por el circuito de resistencia R es:
 - a. $Q = N.(\phi_1 \phi_2)/R$
 - b. Q=N/R
 - c. $Q=N.(\varphi_1-\varphi_2)$
 - d. N.d.a.
- 5. En el circuito de la figura, calcular la diferencia de potencial entre los puntos a y b.

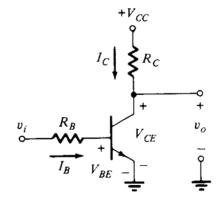


- b. Va-Vb=4V
- c. Va-Vb=2V
- d. N.d.a.

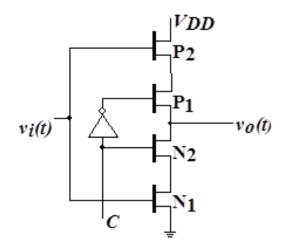


- 6. Se dispone de tres condensadores iguales de 3 μF cada uno. Si se necesita disponer de una capacidad de 2 μF , la podemos obtener:
 - a. Conectando los tres en paralelo.
 - b. Conectando dos en serie y esta serie en paralelo con el tercero.
 - c. Conectando dos en paralelo y este paralelo en serie con el tercero.
 - d. No se puede conseguir ese valor.


- 7. En el circuito de la figura se indican la posición y los valores de las resistencias, baterías (f.e.m. y resistencias internas) y capacidad del condensador. Calcule, en el estado estacionario, la diferencia de potencial entre los puntos a y b.
 - a. Vab=32V
 - b. Vab=24V
 - c. Vab=21V
 - d. N.d.a.


- 8. En el circuito de la figura la tensión en bornes de la resistencia de 3Ω es de 45V. ¿Cuál será la Intensidad que circula por el generador (expresada en amperios)?
 - a. 22'4 | -29⁰
- b. 15'4 -45⁰
- c. 5'4 25 °
- d. N.d.a.

- 9. Un diodo se conecta a un generador de corriente alterna como indica la figura. ¿Cuándo conduce el diodo?
 - a. Nunca.
 - b. Siempre.
 - c. En los ciclos positivos de la tensión.
 - d. En los ciclos negativos de la tensión



- 10. Dada la puerta mostrada en la figura, cuando la entrada v_i está en baja, la salida v_o y el transistor están:
- a. vo en alta y el transistor no conduce.
- b. vo en baja y el transistor si conduce.
- c. vo en alta y el transistor si conduce.
- d. vo en baja y el transistor no conduce.

PROBLEMA 1 (max 3 puntos)

El circuito de la figura adjunta corresponde a una puerta en tecnología CMOS: Explique su funcionamiento y especifique el estado de cada uno de los transistores para cada una de las configuraciones de entrada.

