PROBLEMAS FISICA III- Hoja 7

Problema 1

Demostrar, por sustitución en la ecuación de Schroedinger para el átomo de hidrógeno unidimensional, que la función de onda $\Psi(x) = Axe^{-bx}$ es una solución solo si $b = 1/a_0$ y determinar la energia del estado fundamental.

Problema 2

Demostrar que la densidad de probablidad para la función de onda del ejercicio anterior tiene su máximo en $x = a_0$.

Problema 3

Un electrón se encuentra en un estado caracterizado por l=3. Calcular $|\vec{L}|$ así como los posibles ángulos que puede formar el momento angular con el eje OZ.

Problema 4

Listar los 16 estados posibles (n, l, m_l) que puede ocupar un electrón en el átomo de hidrógeno si n = 4.

Problema 5

Escribir la función de onda para un electrón en el átomo de hidrógeno que se encuentra en el estado (1,0,0) y probar por sustitución que satisface la ecuación de Schroedinger.

Problema 6

La longitud de onda más corta de la serie de Lyman en hidrógeno es $91.13 \ nm$. Determinar las tres longitudes de onda más largas que componen esta serie.

Problema 7

Demostrar que la densidad de probabilidad radial del estado 1s del átomo de hidrógeno tiene su máximo a $r=a_0$.

Problema 8

Encontrar los valores de r para los que la densidad de probabilidad radial para el estado 2s tiene sus máximos.

Problema 9

Determinar la probabilidad de que un electrón en el estado (n,l)=(2,1) del hidrógeno se encuentre entre $(a_0,2a_0)$. Recordemos que $\alpha=e^2/4\pi\epsilon_0\hbar c$ es la constante de estructura fina y toma el valor 1/137 en unidades naturales.

Problema 10

Para el átomo de Hidrógeno en su estado fundamental, determinar la probabilidad de encontrar al electrón entre $(a_0, 1.01a_0)$ sin necesidad de hacer ninguna integración.

Problema 11

Encontrar las direcciones en el espacio en que la densidad de probabilidad angular para el electrón del problema 8 tiene sus máximos y minimos.

Problema 12

Explicar por qué los siguientes estados (n, l, m_l, m_s) no pueden representar a un electrón en el átomo de Hidrógeno.

- $(2, 2, -1, \pm 1/2)$
- (3, 1, 2, -1/2)
- (4, 1, 1, 3/2)
- 2, -1, 1, 1/2

Problema 13

Teniendo en cuenta que el número de estados para un momento angular dado l es 2(2l+1), incluyendo el spin, demostrar que el número total de estados para un número cuántico principal dado n es $2n^2$ i.e. $\sum_{l=0}^{n-1} 2(2l+1)$.

Problema 14

Un conjunto de átomos de hidrógeno se encuentra inmerso en un campo magnético B=3.5~T. Ignorando los efectos de spin, determinar las longitudes de onda de las tres componentes Zeeman para las transiciones a) $3d \rightarrow 2p$ y b) $3s \rightarrow 2p$.