2º Matemáticas, curso 2020-21

Planteamiento (y resolución) de recurrencias

1. Disponemos de n cerillas para formar palabras con las letras I (una cerilla) y V (dos cerillas). Sea P_n el número de palabras diferentes que podemos formar de esta forma utilizando las n cerillas.

- a) Halla una fórmula de recurrencia para P_n .
- b) ¿Qué relación tienen los P_n con los números de Fibonacci, F_n , definidos por la relación F_n $F_{n-1} + F_{n-2}, n \ge 2, F_0 = 0, F_1 = 1$? Justifica la respuesta.
- c) Sea $P_{n,k}$ el número de palabras contadas en P_n que tienen k letras. Calcula $P_{n,k}$.
- d) Utiliza los apartados b) y c) para demostrar la fórmula $F_{n+1} = \sum_{k} {n-k \choose k}$.
- a) Sea a_n el número de listas de ceros y unos de longitud n que no tienen unos consecutivos. Halla una recurrencia para a_n y, en su caso, resuélvela. b) Repite el ejercicio para b_n , que es el número de listas de ceros, unos y doses de longitud n que no tienen unos consecutivos.
- **3.** Consideramos las sucesión de números (I_n) dada por

$$I_n = \int_0^1 x^n e^x dx, \qquad n \ge 0.$$

- a) Comprueba que la sucesión (I_n) verifica la recurrencia $I_n = e nI_{n-1}$ para $n \ge 1$, junto con la condición inicial $I_0 = e - 1$.
- b) Para resolver la relación anterior, vamos a hacer un "cambio de variables": considera la sucesión (J_n) dada por

$$J_n = (-1)^{n+1} \frac{I_n}{n! e}$$
 para cada $n \ge 0$.

y verifica que

$$J_n = J_{n-1} + \frac{(-1)^{n+1}}{n!} \qquad \text{para cada } n \ge 1.$$

c) Obtén una fórmula para J_n y deduce la correspondiente fórmula para I_n .

RESOLUCIÓN DE RECURRENCIAS LINEALES CON COEFICIENTES CONSTANTES

4. Comprueba que

(a)
$$\begin{cases} a_0 = 1, \\ a_n = 2a_{n-1} + 5, \quad n \ge 1; \end{cases} \implies a_n = 3 \cdot 2^{n+1} - 5$$
(4)
$$\begin{cases} a_0 = 1, \\ a_0 = 1, \end{cases}$$

(b)
$$\begin{cases} a_0 = 1, \\ a_{n+1} = 2a_n + 2^n, & n \ge 0; \end{cases} \implies a_n = 2^n + n 2^{n-1}$$

(c)
$$\begin{cases} a_0 = 3, \\ a_{n+1} = a_n + 3n^2 - n, & n > 0; \end{cases} \implies a_n = 3 + n(n-1)^2$$

(d)
$$\begin{cases} a_0 = 0, a_1 = 1, \\ a_n = 5a_{n-1} - 6a_{n-2}, & n \ge 2; \end{cases} \implies a_n = 3^n - 2^n$$

4. Comprueba que
$$(a) \begin{cases} a_0 = 1, \\ a_n = 2a_{n-1} + 5, \quad n \ge 1; \end{cases} \implies a_n = 3 \cdot 2^{n+1} - 5$$

$$(b) \begin{cases} a_0 = 1, \\ a_{n+1} = 2a_n + 2^n, \quad n \ge 0; \end{cases} \implies a_n = 2^n + n \cdot 2^{n-1}$$

$$(c) \begin{cases} a_0 = 3, \\ a_{n+1} = a_n + 3n^2 - n, \quad n \ge 0; \end{cases} \implies a_n = 3 + n(n-1)^2$$

$$(d) \begin{cases} a_0 = 0, a_1 = 1, \\ a_n = 5a_{n-1} - 6a_{n-2}, \quad n \ge 2; \end{cases} \implies a_n = 3^n - 2^n$$

$$(e) \begin{cases} a_0 = 1, a_1 = 3, \\ a_{n+2} = 2a_{n+1} - 2a_n, \quad n \ge 0; \end{cases} \implies a_n = 3^n - 2^n$$

$$(f) \begin{cases} a_0 = 0, a_1 = 1, \\ a_n = -3a_{n-1} - 2a_{n-2} + 3^n, \quad n \ge 2; \end{cases} \implies a_n = -\frac{5}{4}(-1)^n + \frac{4}{5}(-2)^n + \frac{9}{20}3^n$$

$$(g) \begin{cases} a_0 = 0, a_1 = 2, \\ a_n = 4a_{n-1} - 4a_{n-2} + 2n, \quad n \ge 2; \end{cases} \implies a_n = -8 \cdot 2^n + 4n \cdot 2^n + 8 + 2n$$

$$(h) \begin{cases} a_0 = 0, a_1 = 2, \\ a_n = 6a_{n-1} - 9a_{n-2} + 2^n + 3^n, \quad n \ge 2; \end{cases} \implies a_n = -4 \cdot 3^n + \frac{3}{2}n \cdot 3^n + \frac{1}{2}n^2 \cdot 3^n + 4 \cdot 2^n$$

(f)
$$\begin{cases} a_0 = 0, a_1 = 1 \\ a_n = -3a_{n-1} - 2a_{n-2} + 3^n, \quad n > 2; \end{cases} \implies a_n = -\frac{5}{4}(-1)^n + \frac{4}{5}(-2)^n + \frac{9}{20}3^n$$

(g)
$$\begin{cases} a_0 = 0, a_1 = 2 \\ a_n = 4a_{n-1} - 4a_{n-2} + 2n, & n \ge 2; \end{cases} \implies a_n = -8 \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 4n \cdot 2^n + 8 + 2n \cdot 2^n + 2^n$$

(h)
$$\begin{cases} a_0 = 0, a_1 = 2 \\ a_n = 6a_{n-1} - 9a_{n-2} + 2^n + 3^n, & n \ge 2; \end{cases} \implies a_n = -4 \cdot 3^n + \frac{3}{2} n \cdot 3^n + \frac{1}{2} n^2 \cdot 3^n + 4 \cdot 2^n$$

5. La sucesión $(a_n)_{n=0}^{\infty}$ está definida por la recurrencia lineal de grado $k \geq 1$, con coeficientes constantes y homogénea, siguiente:

$$(\star)$$
 $a_n = \beta_1 a_{n-1} + \beta_2 a_{n-2} + \dots + \beta_k a_{n-k}$ para cada $n \ge k$.

Los coeficientes β_1, \ldots, β_k son datos. Se tienen, además, k condiciones iniciales, los valores de $a_0, a_1, \ldots, a_{k-1}.$

- a) Llamemos $B = \max\{|\beta_1|, \dots, |\beta_k|\}$ y $A = \max\{|a_0|, |a_1|, \dots, |a_{k-1}|\}$. Prueba, por inducción, que $|a_n| \le A (1+B)^n$ para todo $n \ge 0$.
- b) Supongamos ahora que la ecuación característica asociada a (\star) tiene raíces z_1, z_2, \ldots, z_k . Estos números, en principio complejos, podrían repetirse. Digamos que ya van ordenadas de mayor a menor, en módulo: $|z_1| \geq |z_2| \geq \cdots \geq |z_k|$. Llamemos $R = |z_1|$ al máximo módulo de estas raíces.
 - Supongamos que $|z_j| < R$ para $j = 2, \ldots, k$. Comprueba que existe una constante D tal

$$|a_n| \le D R^n$$
 para todo $n \ge 0$.

- Supongamos que, para cierto $1 \le m \le k$, tenemos que $z_1 = \cdots = z_m$ y que $|z_i| < R$ para $j=m+1,\ldots,k$ (es decir, z_1 es raíz de multiplicidad m, y es la única cuyo módulo es R). ¿Cuál sería la cota para $|a_n|$ en este caso?
- **6.** a) Definimos la sucesión de números $(a_n)_{n=0}^{\infty}$ mediante

$$a_n = a_{n-1} \cdot a_{n-2}$$
, para cada $n \ge 2$,

junto con $a_0 = \alpha > 0$ y $a_1 = \beta > 0$. Obtén una fórmula cerrada para a_n en términos de n.

b) Sea \mathbf{v}_n una sucesión de vectores de \mathbb{R}^2 que cumple que

$$\mathbf{v}_n = \mathbf{v}_{n-1} + \mathbf{v}_{n-2}$$
, para cada $n \ge 2$,

junto con las condiciones iniciales $\mathbf{v}_0 = (1,0)$ y $\mathbf{v}_1 = (0,1)$.

Da una fórmula explícita para \mathbf{v}_n y calcula cuál es la dirección límite de la sucesión de vectores. Da una formula explicate para el que Es decir, calcula el valor de θ para el que $\lim_{n\to\infty}\frac{\mathbf{v}_n}{\|\mathbf{v}_n\|}=(\cos(\theta),\sin(\theta)).$

$$\lim_{n \to \infty} \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|} = (\cos(\theta), \sin(\theta))$$