Conjuntos y Números

Lista 2 Curso 2019-20

Para todo $n, k \in \mathbb{Z}$, con $0 \le k \le n$, se define el número combinatorio $\binom{n}{k}$ como el número 1) de subconjuntos de k elementos en un conjunto X que tenga n elementos

A partir de la definición, demostrar las siguientes propiedades:

a)
$$\binom{n}{0} = \binom{n}{n} = 1$$
, b) $\binom{n}{k} = \binom{n}{n-k}$, c) $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$, d) $\sum_{k=l}^{n} \binom{k}{l} = \binom{n+1}{l+1}$,

- e) $\sum_{k=0}^{n} {n \choose k} = 2^n$, es decir, el conjunto X tiene en total 2^n subconjuntos.
- Utilizar la definición de los números combinatorios $\binom{n}{k}$ para demostrar que para todo $n \in \mathbb{N}$:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Derivar k veces esa igualdad y evaluarla en x=0 para demostrar que se tiene la siguiente expresión algebraica para los números combinatorios:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \,.$$

Deducir la fórmula general del binomio de Newton

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

- ¿Cuáles de las siguientes funciones son inyectivas? ¿Cuáles suprayectivas? ¿Es alguna de ellas biyectiva? (Comenzar comprobando que todas ellas son funciones y que lo son entre los conjuntos que se indican).
 - a) $f: \mathbb{N} \to \mathbb{N}$, f(m) = m + 2; b) $f: \mathbb{Z} \to \mathbb{Z}$, f(m) = 2m 7; c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x x^3$; e) $f: \mathbb{N} \to \mathbb{N}$, f(n) = n(n+1); f) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$; g) $f: \mathbb{Z} \to \mathbb{N}$, $f(n) = n^2 + n + 1$;

- d) $f: \mathbb{O} \to \mathbb{O}$, $f(x) = x^2 + 4x$;
- h) $f: \mathbb{N} \to \mathbb{O}$, f(t) = t/(t+1).
- Dada $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |2x + 1/2| 1/2, hallar su imagen y también $f(\mathbb{Z})$. Demostrar que f no es ni sobrevectiva ni invectiva. Probar que, sin embargo, sí da una biyección entre \mathbb{Z} y su imagen.
- 5) Sea $f: X \to Y$ una función. Definimos para cada subconjunto $A \subset Y$ la imagen inversa:

$$f^{-1}(A) = \{ x \in X \mid f(x) \in A \}.$$

Dados subconjuntos $Z, W \subset Y$, demostrar que

- a) $f^{-1}(Z \cup W) = f^{-1}(Z) \cup f^{-1}(W)$ c) $f(f^{-1}(Z)) = f(X) \cap Z$ b) $f^{-1}(Z \cap W) = f^{-1}(Z) \cap f^{-1}(W)$ d) $X \setminus f^{-1}(Z) = f^{-1}(Y \setminus Z)$
- Sea $f: \mathcal{P}(\mathbb{N}) \longrightarrow \mathcal{P}(\mathbb{N})$ dada por $f(A) = \{(n+1)/2 : (n \in A) \land (n \text{ es impar})\}$ para $A\subset\mathbb{N}$. Estudiar si la función es inyectiva y/o sobreyectiva. ¿Quién es $f^{-1}(\varnothing)$?

- 7) Sean $f, g: \mathbb{N} \setminus \{1\} \longrightarrow P = \{primos\}$ las funciones definidas por
 - f(n) =el mayor primo que divide a n
 - g(n) =el menor primo que divide a n.
 - a) Decidir si son inyectivas y/o sobreyectivas.
 - b) ¿Quién es $f^{-1}(\{3\})$? ¿Quién es $g^{-1}(\{3\})$?
- 8) Sean $f, g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por:

$$f(x) = \begin{cases} x^2 & \text{si } x \le 1\\ 1 - x^2 & \text{si } x > 1 \end{cases} \qquad g(x) = \begin{cases} x^2 & \text{si } x < 0\\ (x - 1)^2 & \text{si } x \ge 0. \end{cases}$$

- a) Dibujar los gráficos de las funciones $f, g, g \circ f$ y $f \circ g$.
- b) Encontrar las imágenes de cada una de las cuatro funciones anteriores y decidir si son inyectivas y/o suprayectivas.
- 9) Dadas funciones $f: X \to Y$, $g: Y \to Z$, probar las siguientes afirmaciones:
 - a) f invectiva y g invectiva $\Rightarrow g \circ f$ invectiva.
 - b) f sobre y g sobre $\Rightarrow g \circ f$ sobre.
 - c) Si falta alguna de las dos hipótesis en los casos anteriores, la conclusión puede ser falsa.
 - d) Si $g \circ f$ es suprayectiva, entonces g es suprayectiva. Si $g \circ f$ es inyectiva, entonces f es inyectiva.
 - e) Si g es biyectiva, $g \circ f$ es inyectiva si y sólo si lo es f, y es sobre si y sólo si lo es f.
 - f) Si además X=Z, la afirmación del apartado anterior también es cierta para $f\circ g$.
- 10) Sean A y B dos conjuntos finitos de m y n elementos respectivamente.
 - a) Hallar el número de funciones $f: A \longrightarrow B$.
 - b) Hallar el número de funciones inyectivas $f: A \longrightarrow B$.
- 11) Sea X un conjunto finito con n elementos. ¿Cuántos subconjuntos tiene $X \times X$? ¿Cuántas funciones hay de X en $X \times X$?
- 12) Utilizar el principio de inclusión-exclusión para responder a las siguientes preguntas:
 - (a) ¿Cuántos números naturales coprimos con 1000 hay entre 1 y 1000?
 - (b) ¿Cuántos números naturales coprimos con 360 hay entre 1 y 360?
- 13) En una reunión de 4 personas, cada uno ha venido con su paraguas y los han dejado en un paragüero. Al final de la reunión, cada persona escoge un paraguas de forma aleatoria.
 - a) ¿Cuántas maneras hay de distribuir los paraguas de forma que ninguno se quede con el suyo?
 - b) Responder a la misma pregunta para el caso de n personas y n paraguas.
- **14)** Demostrar que dados n enteros a_1, a_2, \ldots, a_n , no necesariamente distintos, existen enteros k y l con $0 \le k < l \le n$ tales que la suma $a_{k+1} + a_{k+2} + \cdots + a_l$ es un múltiplo de n.