DESCRIPCIÓN FENOMENOLÓGICA DE LOS SISTEMAS TERMODINÁMICOS MÁS USUALES

- 5. Una vasija contiene 8,450 g de agua a 0°C y el resto de la misma se llena con parafina. Cuando el agua se congela a 0°C, se expulsan 0,620 g de parafina. La densidad de la parafina a 20°C es 0,800 g/cm³ y su coeficiente de dilatación 9,0·10⁻⁴K⁻¹. Calcúlese la densidad del hielo. Considérese la densidad del agua igual a 1g/cm³. *Sol.: 0,917 g/cm³*
- 6. Los coeficientes de dilatación cúbica y de compresibilidad isotérmica de cierta sustancia vienen dados por $\alpha = \frac{3aT^3}{V}$ y $\kappa_T = \frac{b}{V}$, siendo a y b constantes. Determínese la ecuación de estado que relaciona p, V y T. Sol.: $V = 3aT^4/4 bp + cte$
- 7. Un metal, cuyos coeficientes de dilatación cúbica y de compresibilidad isotérmica son 5·10⁻⁵ K⁻¹ y 1,2·10⁻¹¹ Pa⁻¹ respectivamente, está a una presión de 10⁵ Pa y a una temperatura de 20°C. Si se le recubre con una capa gruesa y muy ajustada de una sustancia de dilatación y compresibilidad despreciables
 - a) ¿cuál será su presión final al elevar su temperatura hasta 32 °C?, (Sol.: 5,01·10⁷ Pa)
 - b) ¿cuál es la máxima temperatura que puede alcanzar el sistema si la presión más alta que puede resistir la envoltura es 1,2·10⁸ Pa? (*Sol.: 48,78 °C*)
- 8. Un hilo metálico de 0,0085 cm² de sección, sometido a una fuerza de 20 N y a la temperatura de 20°C, está situado entre dos soportes rígidos separados 1,2 m.
 - a) ¿Cuál es la fuerza recuperadora final si la temperatura se reduce a 8°C?. (Sol.: 50,6 N)
 - b) Si además de la anterior disminución de temperatura los soportes se acercan 0,012cm, ¿cuál será la fuerza recuperadora final?. (Sol.: 33,6 N)

Supóngase que en todo momento el hilo se mantiene rectilíneo y que el coeficiente de dilatación lineal y el módulo de Y oung isotermo tienen valores constantes e iguales a $1.5 \cdot 10^{-5} \text{ K}^{-1} \text{ y } 2 \cdot 10^{11} \text{ N/m}^2$, respectivamente.

9. La ecuación de estado de una sustancia elástica ideal es: $F = KT \cdot \left(\frac{L}{L_0} - \frac{L_0^2}{L^2}\right), \text{ donde}$

F es la fuerza recuperadora, K es una constante y L_0 (valor de la longitud a fuerza recuperadora nula) es función sólo de la temperatura.

a) Determínese el coeficiente de dilatación lineal.

Sol.:
$$\alpha_L = -\left(\frac{L}{L_0} - \frac{{L_0}^2}{L^2}\right) / T\left(\frac{L}{L_0} + \frac{2{L_0}^2}{L^2}\right)$$

b) Determínese el módulo de Young de la sustancia, así como el valor de este último a fuerza recuperadora nula. *Sol.:* $\gamma_{(F=0)} = 3KT/A$