Universidad
Carlos III de Madrid

Exercise 1: Given a symmetric-memory multiprocessor based on the snooping bus protocol. Each

processor has a private cache which is based on the MSI coherence protocol. Each cache line consists of a

single word.
CPU read hit
Shared
CPU read (read only)
Place read miss on bus !
CPU
) read
CPU write ‘Oé\'{- miss
2|3 S Place read
sl miss on bus
o
8o
]
a
& &
. Cache state transitions
Exclusive based on requests from CPU
(read/write)

CPU write miss

Write-back cache block
Place write miss on bus
CPU write hit
CPU read hit

HE
2lEe
@
S|EB
2\ O
£18
Write miss = |®
for this block

Write miss for this block

Invalidate for
this block

Shared

Read miss
for this block

Exclusive
(read/write)

(read only)

CPU
read
miss

Cache state transitions based
on requests from the bus

The following table shows the initial value in each cache of four different variables.

Initial state
Processor A B C D
PO Shared Exclusive Shared Shared
P1 Invalid Invalid Invalid Shared
P2 Invalid Invalid Shared Shared

The following table shows the final state of these variables after performing several memory accesses.

Final state

Processor A B C D
PO Invalid Invalid Invalid Shared
P1 Invalid Invalid Shared Exclusive
P2 Exclusive Exclusive Invalid Shared

Y & Universidad ARCOS —@

Carlos III de Madrid '—ﬁ—rﬁ_(ﬁ
ey £V 4

Complete the following tasks:

e Describe for each variable (A, B, C and D) what memory access/accesses are performed to reach the
final state. Note 1: To reach the final state it could be necessary to perform a single or several
memory accesses. Note 2: it is possible to have an unreachable final state (that is, a state without

solution). Justify your answer.
e For each variable describe the generated bus traffic associated to the transition from the initial to

the final state.

Exercise 2: Given a symmetric-memory multiprocessor based on the snooping bus protocol. Each
processor has a private cache which is based on the MESI coherence protocol. All processers access the

shared variables a, b and c.

(PrRd/-
Pr-
E ; e ~
v e
BusRd/Flush " BusRdX/Flush
YR
Prwr- \ \
\ \
\
Wi/ BusR \\ ~ | \
ueR b
!urh B},\stXI% lush
P/ £y
Bus Compartido g 3
e | R
¢ \BustyFu’u\
\]
PrRd/— s @
BusRd/Flu ’ /’
/
{IRS) ’, ‘s ‘

Complete que following tables. Each one contains a sequence of memory accesses. Each sequence is independent
and for all of them the cache memories are initially empty.

) & Universidad ARCOS ﬁﬂ
Carlos III de Madrid '___ d .'_/_'_';;q.

| —

Action Bus transition Which provides Cache 1 state Cache 2 state Cache 3 state
the block?
(M, C1, C2,C3)
P1-Read a
P1-Write a
P2-Read a
P3-Write a
P1-Read a
Action Bus transition Which provides Cache 1 state Cache 2 state Cache 3 state
the block?
(M, C1, C2,C3)
P1-Read b
P3-Read b
P3-Write b
P1-Read b
P2-Read b
Action Bus transition Which provides Cache 1 state Cache 2 state Cache 3 state
the block?
(M, C1, C2,C3)
P2-Read ¢
P2-Write c
P2-Write c
P3-Read ¢
P1-Write c

Exercise 3:

Given a symmetric shared memory system based on the snooping bus protocol and consisting of three
processors. Each processor has a private cache based on the MSI protocol. The cache memories are direct-
mapped and have only four cache lines with blocks of two words. Each cache uses the complete memory
address of the block for the tag field.

N Universidad
Y Carlos Il de Madrid

CPU read hit
Write miss for this block

Invalidate for

Shared this block

(read only)

CPU read
Place read miss on bus

Shared
(read only)

CPU

_ read CFU
CPU write g‘ﬁ' miss read
@ b = miss
2|2 & Place read § =
El= miss on bus = g »
ale %|a 2
z|8 z|E G
o Sl
& 218
Write miss = |®
for this block

Read miss
for this block

Cache state transitions based I

Exclusive on requests from the bus

(read/write)

Exclusive

based on requests from CPU))
(readwrite)

\) CPU write miss
Write-back cache block

Place write miss on bus

Cache state transitions I

CPU write hit
CPU read hit

The following tables show the initial state of each cache memory, with the least-significant word at the left.

Processor PO

Block | State Tag Data

BO [0x00100700 | Ox0O0000000 | Ox7FAABB11
B1 S 0x00100708 | 0x00000000 | 0x00001234
B2 M 0x00100710 | OxO0000000 | Ox0077AABB
B3 [0x00100718 | Ox0O0000000 | Ox7FAABB11
Processor P1

Block | State Tag Data

BO | 0x00100700 | 0x00000000 | Ox7FAABB11
B1 M 0x00100728 | 0x00000000 | OxFFO00000
B2 | 0x00100710 | Ox00000000 | OXEEEE7777
B3 S 0x00100718 | 0x00000000 | Ox7FAABB11
Processor P2

Block State Tag Data

BO S 0x00100720 | 0x00000000 | Ox1111AAAA
B1 S 0x00100708 | 0x00000000 | 0X00001234
B2 | 0x00100710 | 0Ox00000000 | Ox7FAABB11
B3 | 0x00100718 | 0x00001234 | Ox1111AABB

3 & Universidad
§ Carlos III de Madrid

The following paragraphs are 3 different actions that have to be analyzed independently, all of them

starting from the initial program state shown above.

a) P2: write 0x00100708, OxFFFFFFFF

b) P2:read 0x00100708
c) P2:read 0x00100718

For each one the actions use a table like the one shown below. In each table show the changes that are
produced in the cache memories. For the reads, write which will be the value read by the operation.

Processor | Block Previous | New
state State

Tag

Data

