
Temporizadores

Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es

Temporizadores

- Es un dispositivo lógico capaz de permanecer en un estado 0 ó 1 en un tiempo determinado dependiendo de un evento.
- Dependiendo del modelo del PLC habrá un número determinado de temporizadores.
- ▶ Elementos del temporizador:
 - ► T<N>: Identificador del temporizador.
 - S: señal de disparo, activada por flanco.
 - Q: salida lógica del temporizador.
 - ▶ TW: tiempo a contar
 - R: reset del temporizador (Q a 0)
 - DUAL/DEZ: tiempo que falta

Formas de cargar el tiempo en el temporizador

- S5TIME: S5T#aHbbMccSdddMS
 - Ejemplo cargar el temporizador I de tipo SE con un retardo de I 0s

```
U 124.0
L S5T#10S
SE TI
```

- ▶ BCD: W#16#bxyz
 - ▶ Base de tiempo: b (0 10 ms, I 100 ms, 2 1s, 3 -10s)
 - xyz: dígito de 0 a 9
 - Ejemplo cargar el temporizador 2 de tipo SI con un tiempo de 5s

```
U 124.0
L W#16#1050
SI T2
```

Características de temporizadores (1/3)

Funcionamiento:

Se carga el valor de tiempo en el temporizador y empieza a contar cuando éste se dispare. La salida quedará modificada cuando llega a su fin.

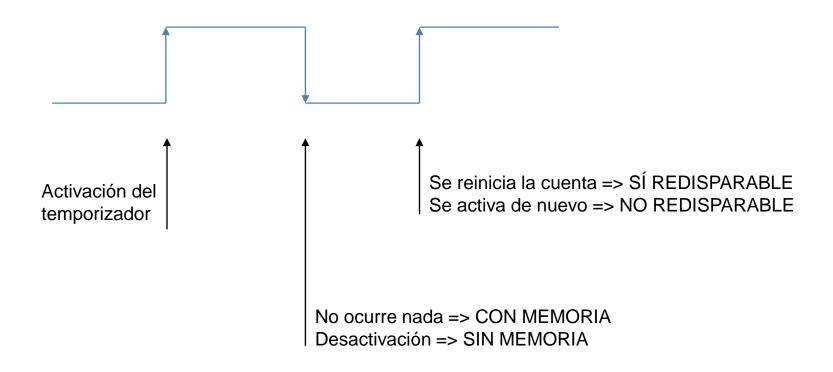
▶ Tipos de temporizadores \$7:

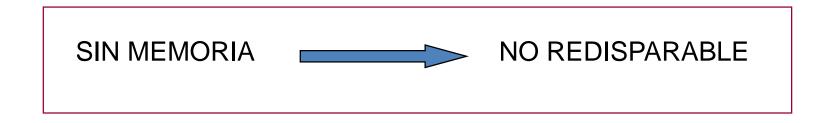
- Temporizador de pulso (TP)
 - ▶ Se activan por FP y se desactivan transcurrido un tiempo (SI y SV)
- ▶ Temporizador de retardo a la conexión (TON)
 - ▶ Se activan transcurrido un tiempo desde FP (SE y SS)
- Temporizador de retardo a la desconexión(TOFF)
 - ▶ Se desactiva transcurrido un tiempo desde FN (SA)

Características de temporizadores (2/3)

Memoria de un temporizador:

- Un temporizador tiene memoria, si tras su puesta en marcha, continúa con la temporización ante la llegada del primer flanco opuesto.
- Cuando no tiene memoria pararía la cuenta y se desactivaría.


Redisparabilidad


- Un temporizador es redisparable cuando, tras su puesta en marcha, reinicializa la cuenta de tiempo con el siguiente flanco de activación.
 - Esta propiedad sólo lo tienen los temporizadores que tienen memoria.

SIN MEMORIA NO REDISPARABLE

Características de temporizadores (3/3)

Memoria y Redisparabilidad

Temporizadores de STEP 7

- Sintaxis de AWL :
 - S <I | V | E | S | A> T<N>

AWL	Memoria	Redisparo	Tipo	Nombre
SI	NO	x	TP	S-IMPULS
SV	SI	SI	TP	S-VIMP
SE	NO	x	TON	S-EVERZ
SS	SI	SI	TON	S-SEVERZ
SA	NO	X	TOFF	S-AVERZ

Ejemplo:

U "Disparo"

L S5T#10S200MS

SE TI

Ejemplo

```
//Configuración del TEMPORIZADOR de la Figura 6.4
      E 124.0
                               //configura entrada de disparo (S)
      S5T#10S2MS
                               //tiempo en formato S5TIME (TW)
                               //tipo (SE) y nombre (T1)
SE
      T1
U
      E 124.1
      T1
                               //configura entrada reset (por nivel)
      Т1
      A 124.0
                               //asigna a A124.0 la salida lógica Q
      T1
      MW10
                               //asigna la salida DUAL a MW10
LC
      T1
                               //asigna la salida DEZ a MW12
      MW12
```

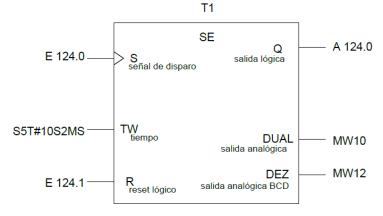
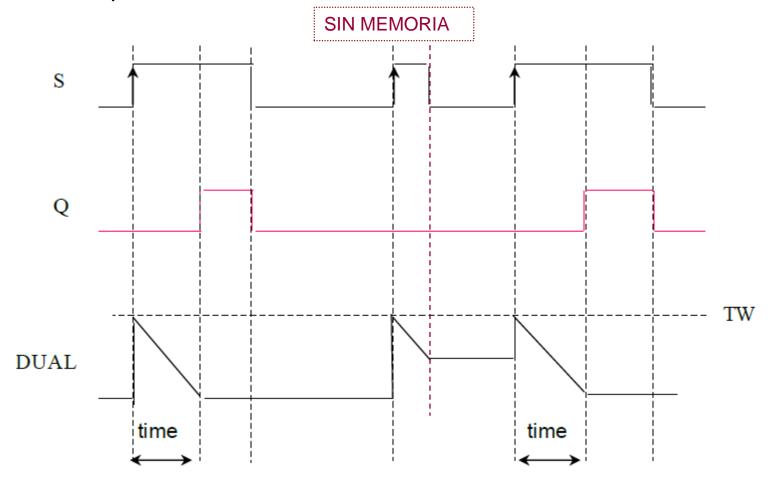
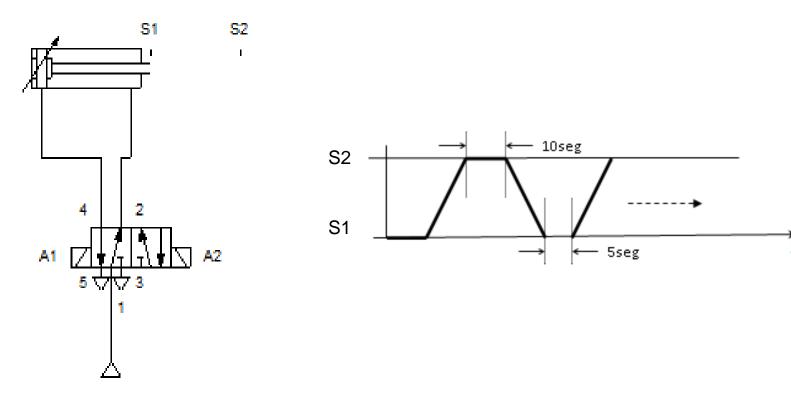
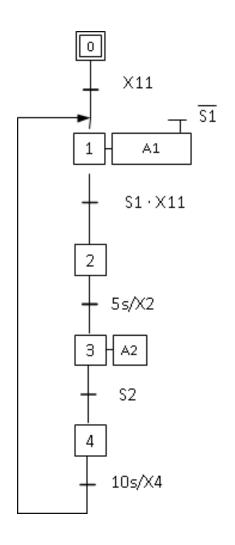



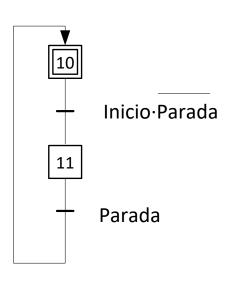
Figura 6.4. Bloque de temporización SE (KOP) con todos los parámetros en uso

Temporizador con retardo a la conexión SE


- Es de tipo TON
- No tiene memoria
- Empieza la cuenta del temporizador por FP en S
- Se activa al acabarse el tiempo de carga
- Se desactiva por FN de S o al ser reseteado

Memoria	NO
Redisparo	X




Ejemplo de SE

Sea un cilindro de doble efecto con una válvula distribuidora 5/2 biestable. Al pulsar *Inicio* el siguiente ciclo es realizado: el cilindro se mantiene comprimido durante 5s, luego se expande y queda con máxima expansión durante 10 s. Este ciclo se repite indefinidamente hasta que sea pulsado *Parada*. El paro se evalúa al finalizar el ciclo completo.

Modelado en Grafcet (Ejemplo SE)

S7 (Ejemplo SE)

OB100

Segm.: 1 Inicio X0 y X10

SET

S "X0"

S "X10"

R "X1"

R "X2"

R "X3"

R "X4"

R "X11"

Segm.: 1 X0->X1

U "X0"

U "X11"

R "X0"

S "X1"

Segm.: 2 X1-> X2

Ü "X1"

U "S1"

U "X11"

R "X1"

S "X2"

Segm.: 3 T1 SE X2

U "X2"

L S5T#5S

SE T 1

Segm.: 4 X2 -> X3

Ü "X2"

U T 1

R "X2"

S "X3"

Segm.: 5 X3 -> X4

U "X3"

U "S2"

R "X3"

S "X4"

Segm.: 6 T2 X4

U "X4"

L S5T#10S

SE T 2

Segm.: 7 X4 -> X1

U "X4"

U T 2

R "X4"

S "X1"

Segm.: 8 X10 -> X11

U "X10"

U "Inicio"

UN "Parada"

R "X10"

S "X11"

Segm.: 9 X11 -> X10

U "X11"

U "Parada"

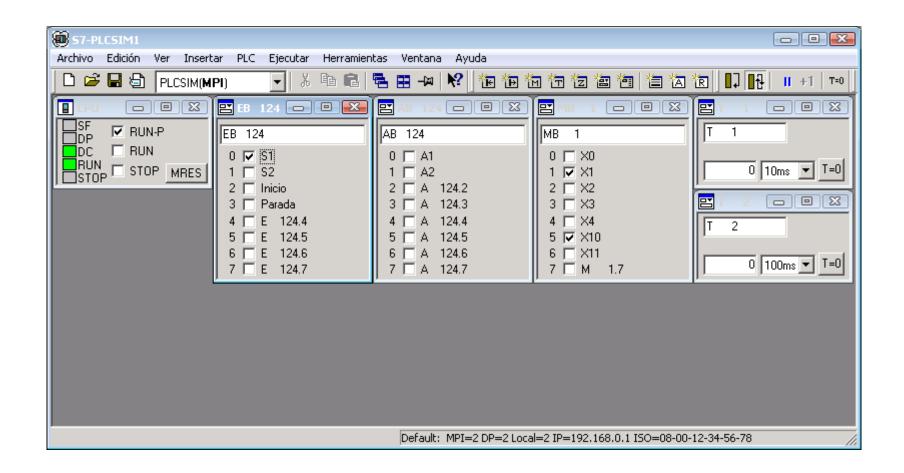
R "X11"

S "X10"

Segm.: 10 Acciones X1

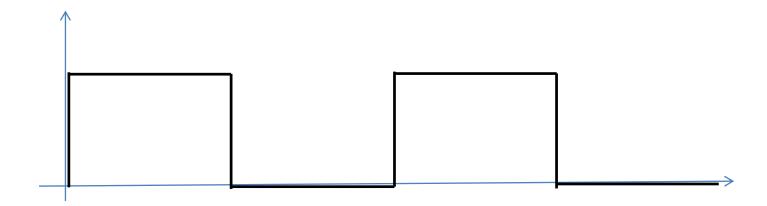
U "X1"

UN "S1"

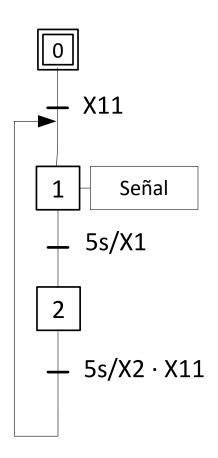

= "A1"

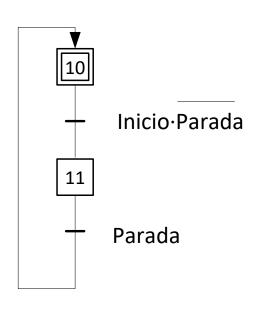
Segm.: 11 Acciones de X3

U "X3"


= "A2"

S7 (Ejemplo SE)




Problema

Generar una señal digital cuadrada de 10 s de periodo. Tiene un marcha-paro. Cuando se pulsa paro estará la salida a nivel bajo. En marcha funciona el generador de señal.

Modelado grafcet

Implementación S7

OB100

SET S "X0" S "X10" R "X1" R "X2" R "X11" Segm.: 1 X0 -> X1 U "X0"

U "X11" R "X0"

S "X1"

Segm.: 2 T1 SE X1

U "X1"

L S5T#5S

SET1

Segm.: 3 X1 -> X2

U "X1"

U T 1

R "X1"

S "X2"

Segm.: 3 T2 SE X2

U "X2"

L S5T#5S

SET2

Segm.: 5 X2 -> X1

U "X2"

UT2

U "X11"

R "X2"

S "X1"

Segm.: 6 X10 -> X11

U "X10"

U "Inicio"

UN "Parada"

R "X10"

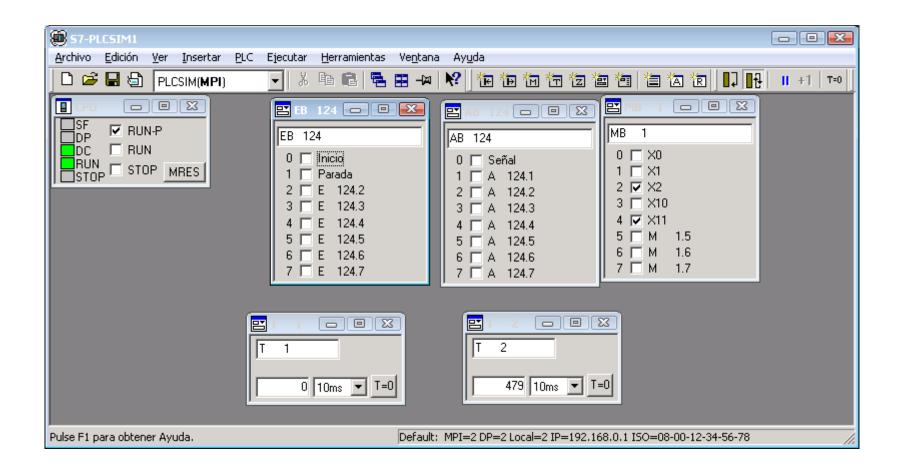
S "X11"

Segm.: 7 X11 -> X10

U "X11"

U "Parada"

R "X11"


S "X10"

Segm.: 8 Acciones X1

U "X1"

= "Señal"

Implementación S7

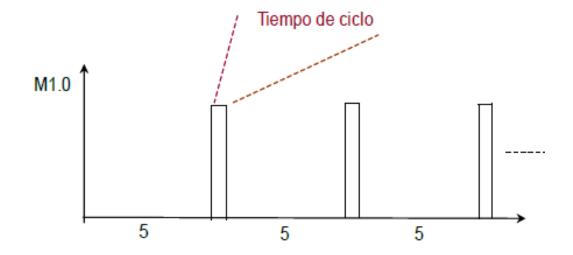
Ejercicio

 Dado el código adjunto, dibujar la evolución de M1.0 en el tiempo

```
//TREN DE PULSOS cada 5s en la marca M 1.0

UN M1.0
L S5T#5S
SE T1 //configura el temporizador

U T1
= M1.0 //M1.0 = NOT(Q)
```


Ejercicio

 Dado el código adjunto, dibujar la evolución de M1.0 en el tiempo

```
//TREN DE PULSOS cada 5s en la marca M 1.0

UN M1.0
L S5T#5S
SE T1 //configura el temporizador

U T1
= M1.0 //M1.0 = NOT(Q)
```

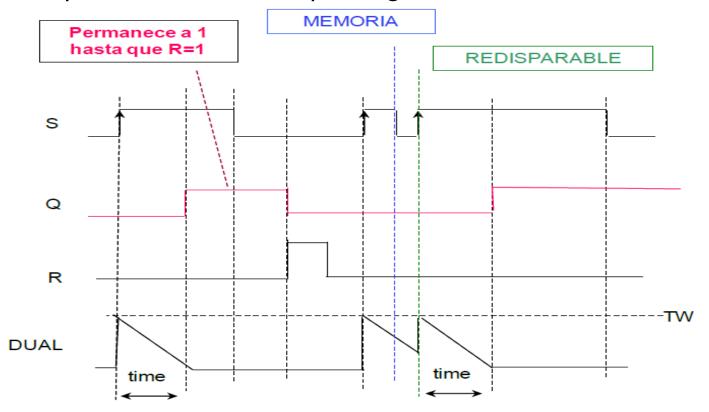

Problema AWL

Dado el código adjunto, dibujar la salida A1.0.

```
UN
          M1.0
     L S5T#5S //valor de carga la mitad del periodo
                     //configura el temporizador
     SE T1
          T1
          M1.0
                     //configura el tren de pulsos
     IJ
          M1.0
          M100.0 //RLO←1 si flanco de subida de un pulso
     FP
          001
                    //Si RLO=0 salta a 001
     SPBN
     UN
          A1.0
          A1.0
                    //cambio de estado de A1.0
001: NOP
                     //instrucción vacía
```

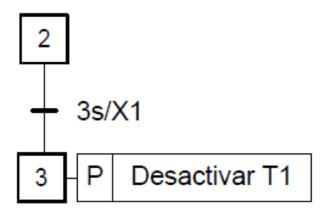
Problema AWL

Es una señal digital cuadrada de 10 s de periodo.

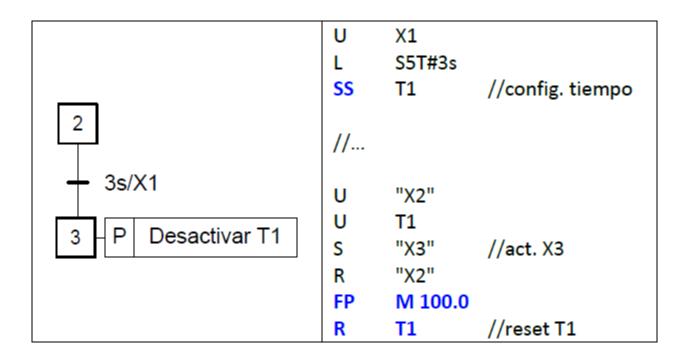

```
//Señal cuadrada en A 1.0 de periodo T=10s
       UN
            M1.0
            S5T#5S
       L
                       //valor de carga la mitad del periodo
                        //configura el temporizador
       SE
            T1
            T1
       U
            M1.0
                        //configura el tren de pulsos
            M1.0
       U
                        //RLO←1 si flanco de subida de un pulso
            M100.0
       FP
                        //Si RLO=0 salta a 001
       SPBN
            001
            A1.0
       UN
            A1.0
                        //cambio de estado de Al.0
  001: NOP
                        //instrucción vacía
A1.0
```

Temporizador con retardo a la conexión SS

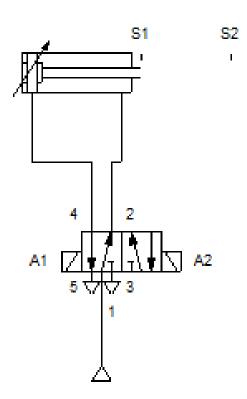
- Es de tipo TON
- Tiene memoria y es redisparable
- Empieza la cuenta del temporizador por FP en S
- Se activa al acabarse el tiempo de carga


Memoria	SI
Redisparo	SI

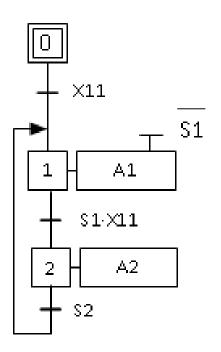
- No se desactiva hasta que se resetea (R)
- Empleado para realizar tareas de perro- guardian.

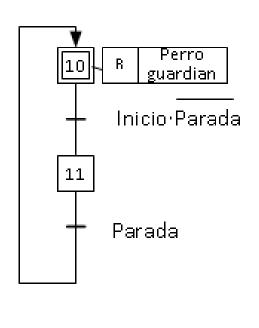

Implementación AWL

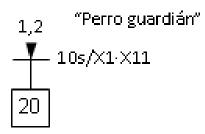
▶ Implementar en AWL el siguiente Grafcet:


Implementación AWL

▶ Implementar en AWL el siguiente Grafcet:




Ejemplo de SS


Sea un cilindro de doble efecto con una válvula distribuidora 5/2 biestable. Al pulsar *Inicio* el siguiente ciclo es realizado: el cilindro se expande y luego se comprime. **Este ciclo debe de realizarse en menos de 10s.** En caso contrario, el automatismo se detendrá automáticamente quedándose en la última posición. También se puede parar con un pulsador llamado *Parada*. Cuando se para el automatismo, el cilindro debe estar comprimido.

Modelado con Grafcet (Ejemplo SS)

"Secuencia de esta pe"

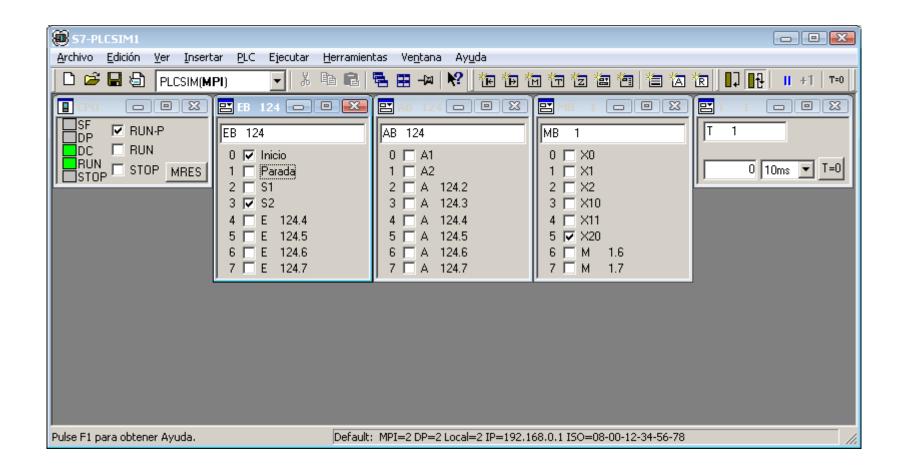
S7 (Ejemplo SS)

```
OB100
SET
S "X0"
S "X10"
R "X1"
R "X2"
R "X11"
R "X20"
```

```
Segm.: 1 X0 -> X1
U "X0"
U "X11"
R "X0"
S "X1"
Segm.: 2 X1 -> X2
U "X1"
U "X11"
U "S1"
R "X1"
S "X2"
Segm.: 3 X2 -> X1
U "X2"
U "S2"
R "X2"
S "X1"
Segm.: 4 X10 -> X11
U "X10"
U "Inicio"
```

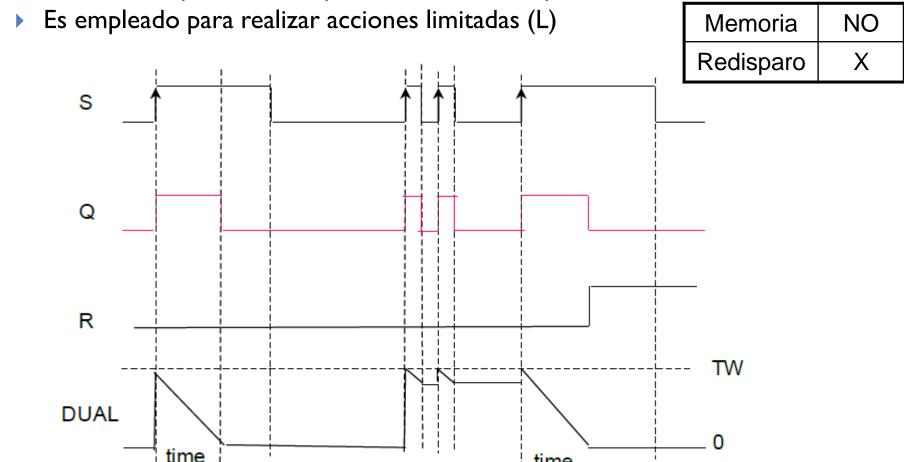
UN "Parada"

R "X10" S "X11"


```
Segm.: 5 X11 -> X10
U "X11"
U "Parada"
R "X11"
S "X10"
Segm.: 6 X1, X2 -> X20
O "X1"
O "X2"
U T 1
R "X0"
R "X1"
R "X2"
R "X10"
R "X11"
RT1
S "X20"
Segm.: 7 Acciones X1
U "X1"
UN "S1"
= "A1"
```

```
Segm.: 8 Disparo de T1
U "X1"
U "X11"
L S5T#10S
SS T 1

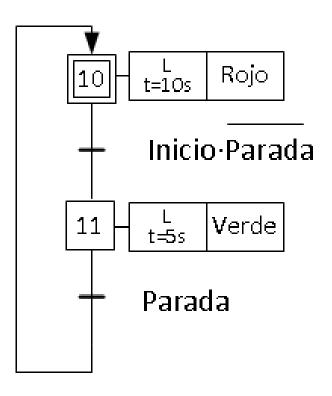
Segm.: 9 Acción X2
U "X2"
= "A2"


Segm.: 10 Desactivar T1 en X10
U "X10"
FP M100.0
R T 1
```

S7 (Ejemplo SS)

Temporizador de pulso SI

- Es de tipo TP
- No tiene memoria
- Empieza la cuenta del temporizador por FP en S y se activa Q
- Se desactiva por FN de S, por acabarse el tiempo o resetearse



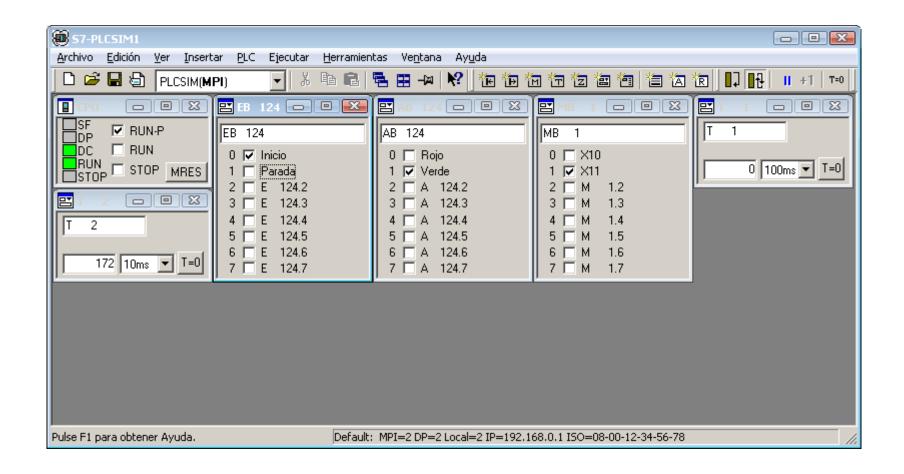
Ejemplo de SI

Realizar un marcha-paro de manera que cuando este activo el automatismo se encienda una luz verde durante los 5 primeros segundo (siempre y cuando continúe activo, en caso contario cesara). Para el caso de paro, será similar pero se encenderá una luz roja en los 10 primero segundos.

Grafcet (Ejemplo SI)

S7 (Ejemplo SI)

OB100 SET S "X10" R "X11" Segm.: 1 X10 -> X11 U "X10" U "Inicio" UN "Parada" R "X10" S "X11" Segm.: 2 X11 -> X10


U "X11"
U "Parada"
R "X11"
S "X10"

Segm.: 3 Cargar temporizador X10 U "X10" L S5T#10S SI T 1

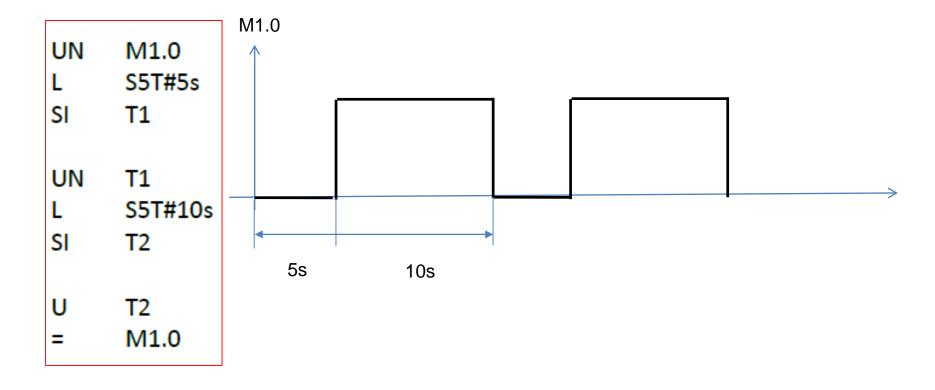
Segm.: 4 Cargar temporizador X11 U "X11" L S5T#5S SI T 2 Segm.: 5 Acción X10 U "X10" U T 1 = "Rojo"

Segm.: 6 Acción X11 U "X11" U T 2 = "Verde"

S7 (Ejemplo SI)

Ejercicio

Dado el siguiente código, dibujar la evolución de M1.0 en el tiempo

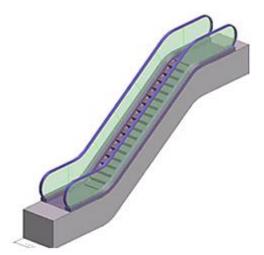

```
UN M1.0
L S5T#5s
SI T1

UN T1
L S5T#10s
SI T2

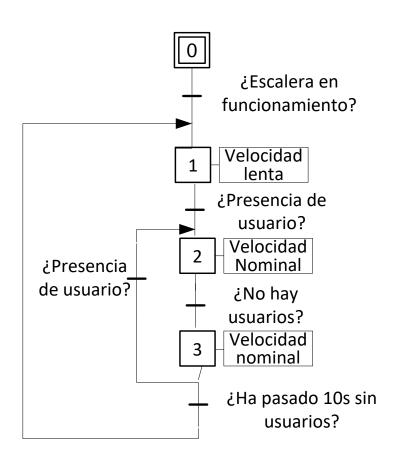
U T2
= M1.0
```

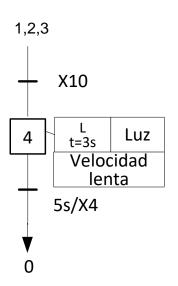
Ejercicio

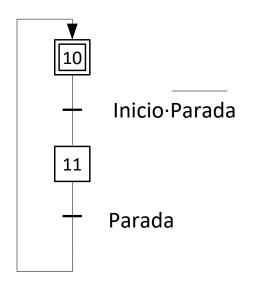
Dado el siguiente código, dibujar la evolución de M1.0 en el tiempo

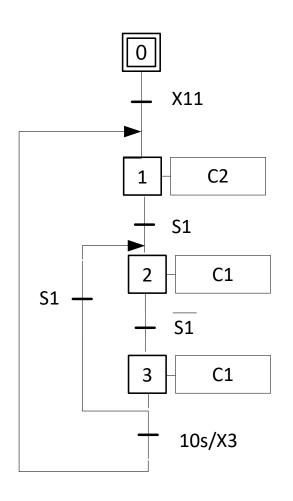


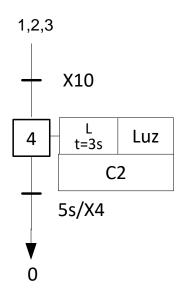
Ejercicio de examen

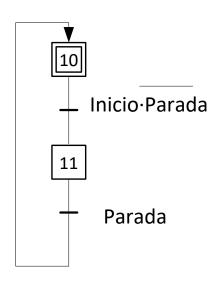

Se trata de diseñar el sistema de control de una escalera mecánica. En funcionamiento y sin presencia de usuarios, la escalera se desplaza lentamente. Al detectar usuarios, la escalera cambia a velocidad nominal. Después de 10 segundos sin presencia de usuarios retornará a velocidad lenta. Tiene un marcha-paro. Al dar paro, la escalera transitará de cualquier estado de funcionamiento a velocidad lenta, y a los 5 segundos se detendrá. Además se activará una luz roja de emergencia durante los 3 primeros segundos. Los usuarios son detectados por incremento de peso en la escalera. Se pide:


I. Grafcet de nivel 2. Indíquese y justifíquese la elección de sensores y actuadores. Además se sabe que el accionador tiene un control de velocidad. La tabla de verdad de sus variables de control corresponde a:


C 1	C2	Accionador
0	0	Parado
0	1	Velocidad lenta
1	0	Velocidad nominal
1	1	Parado


Ejercicio de examen





Ejercicio de examen

Ejercicio de examen

OB100		
SET		
S	"X0"	
S	"X10"	
R	"X1"	
R	"X2"	
R	"X3"	
R	"X4"	
R	"X11"	

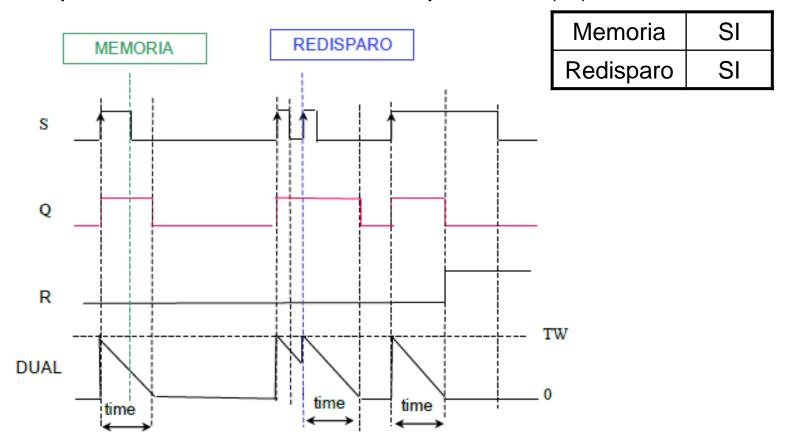
```
Segm.: 1: X0 -> X1
U "X0"
U "X11"
R "X0"
S "X1"
Segm.: 2 X1->X2
U "X1"
U "S1"
R "X1"
S "X2"
Segm.: 3 X2 -> X3
U "X2"
UN "S1"
R "X2"
S "X3"
Segm.: 4 X3 -> X2
U "X3"
U "S1"
R "X3"
S "X2"
```

```
Segm.5: X3 -> X1
U "X3"
U T 1
R "X3"
S "X1"
Segm.6: X1_2_3 -> X4
U "X10"
U(
O "X1"
O "X2"
O "X3"
R "X1"
R "X2"
R "X3"
S "X4"
Segm.: 7 X4 -> X0
U "X4"
UT2
R "X4"
S "X0"
```

```
Segm.: 8 X10 -> X11
U "X10"
U "INICIO"
UN "PARADA"
R "X10"
S "X11"
Segm.: 9 X11 -> X10
U "X11"
U "PARADA"
R "X11"
S "X10"
Segm.: 10 Acción VL
O "X1"
O "X4"
= "C2"
Segm.: 11 Acción VN
O "X2"
O "X3"
= "C1"
```

```
Segm.: 12 T1 de X3
U "X3"
L S5T#10S
SE T 1
Segm.: 13 T2 de X4
U "X4"
```

L S5T#5S

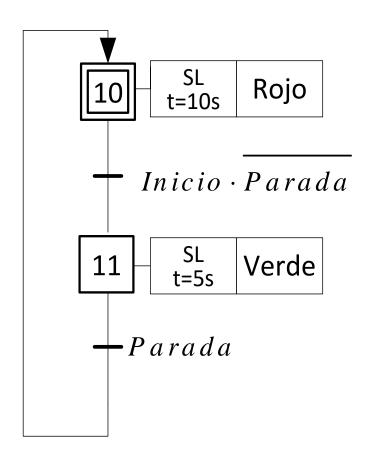

SET2

Segm.: 14 T3 de X4 U "X4" L S5T#3S SI T 3

Segm.: 15 Acción X4
U "X4"
U T 3
= "LUZ"

Temporizador de pulso prolongado SV

- Es de tipo TP
- Tiene memoria y es redisparable
- Empieza la cuenta del temporizador por FP en S y se activa Q
- Se desactiva por acabarse el tiempo o por ser reseteado
- Es empleado para realizar acciones mantenidas y limitadas (SL)



Ejemplo de SV

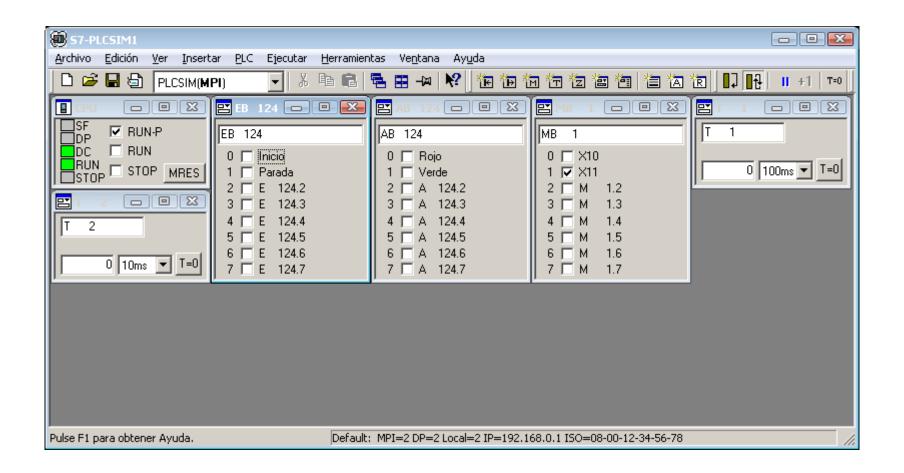
Realizar un marcha-paro de manera que cuando este activo el automatismo se encienda una luz verde durante los 5 primeros segundo, incluso aunque no estuviese en ese estado. Para el caso de paro, será similar pero se encenderá una luz roja en los 10 primero segundos.

Grafcet (ejemplo SV)

S7 (Ejemplo SV) V2

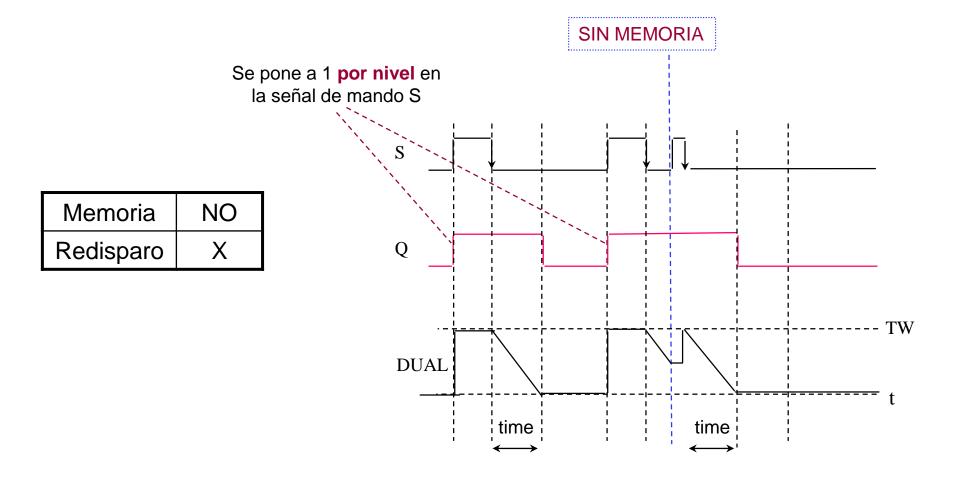
```
OB100
SET
S "X10"
R "X11"
```

```
Segm.: 1 X10 -> X11
U "X10"
U "Inicio"
R "X10"
S "X11"
Segm.: 2 X11 -> X10
U "X11"
U "Parada"
R "X11"
S "X10"
```


```
U "X10"
L S5T#10S
SV T 1

Segm.: 4 Cargar temporizador X11
U "X11"
L S5T#5S
SV T 2
```

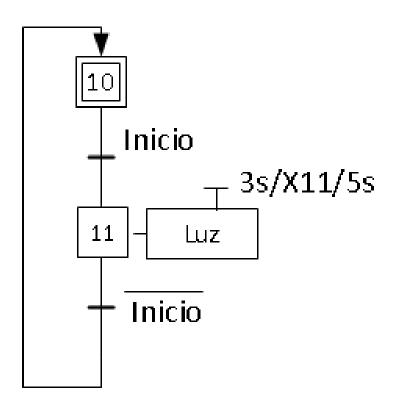
Segm.: 3 Cargar temporizador X10


```
Segm.: 5 Acción X10
    "X10"
    T 1
FP
    M100.0
    "Rojo"
S
U
FN
     M100.1
    "Rojo"
R
Segm.: 6 Acción X11
    "X11"
    T 2
    M100.2
    "Verde"
        2
FN
    M100.3
    "Verde"
```

S7 (Ejemplo SV)

Temporizador de retardo a la desconexión SA

- Es de tipo TOFF
- Empieza la cuenta del temporizador por FN en S y se activa por FP en S
- Se desactiva al acabarse el tiempo
- Es empleado para realizar acciones retardadas y limitadas



Ejemplo de SA

Control de una luz para que se encienda 3s después de la activación del interruptor y se apague 5s después de la desactivación del interruptor

Grafcet (ejemplo de SA)

S7 (Ejemplo SA)

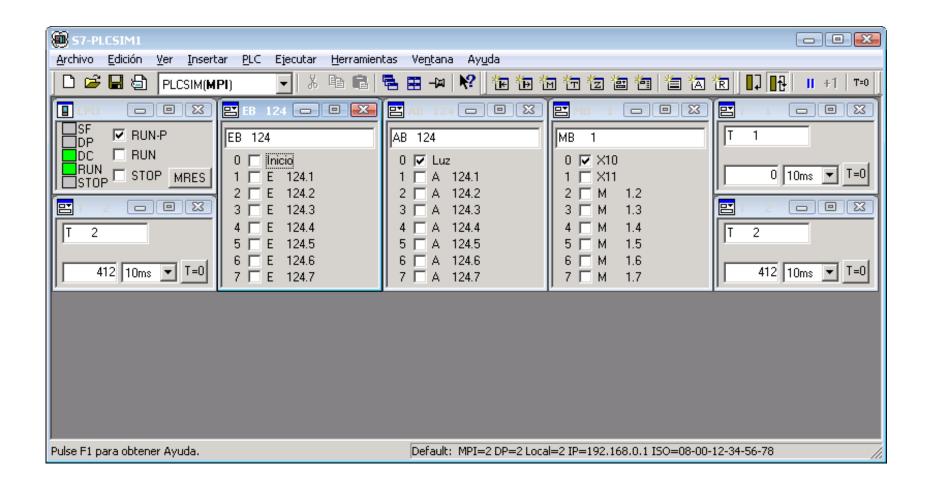
```
OB100
SET
S "X10"
R "X11"
```

```
Segm.: 1 X10 -> X11
U "X10"
U "Inicio"
R "X10"
S "X11"
```

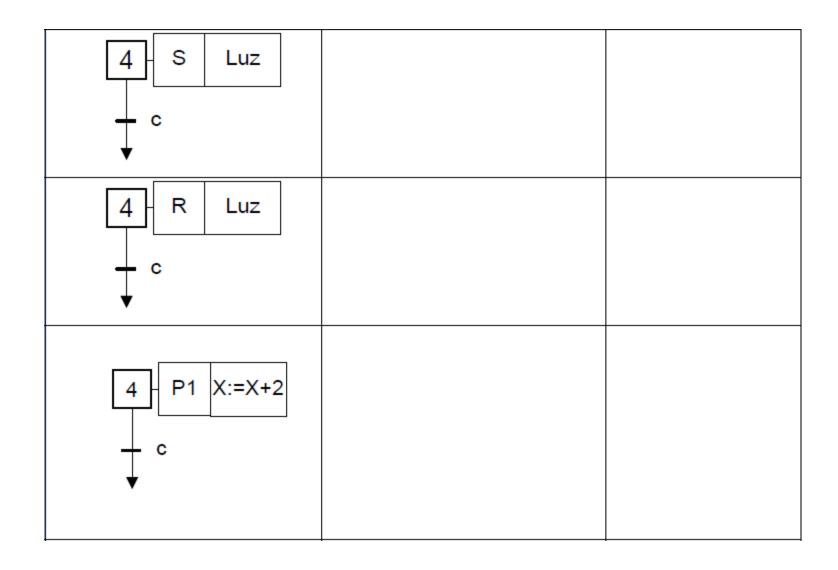
```
Segm.: 2 X11 -> X10
U "X11"
UN "Inicio"
R "X11"
S "X10"
```

Segm.: 3 Cargar retardo U "X11" L S5T#3S SE T 1

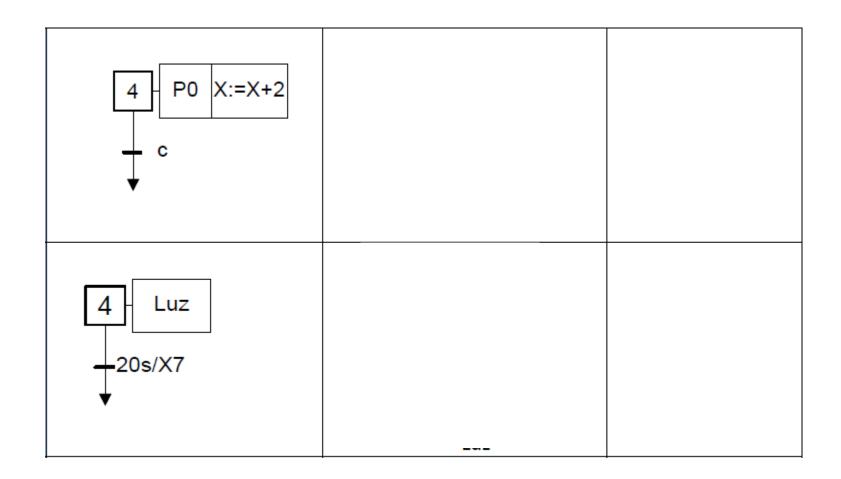
```
Segm.: 4 Cargar retardo a la desconexión
U "X11"
L S5T#5S
SA T 2
```

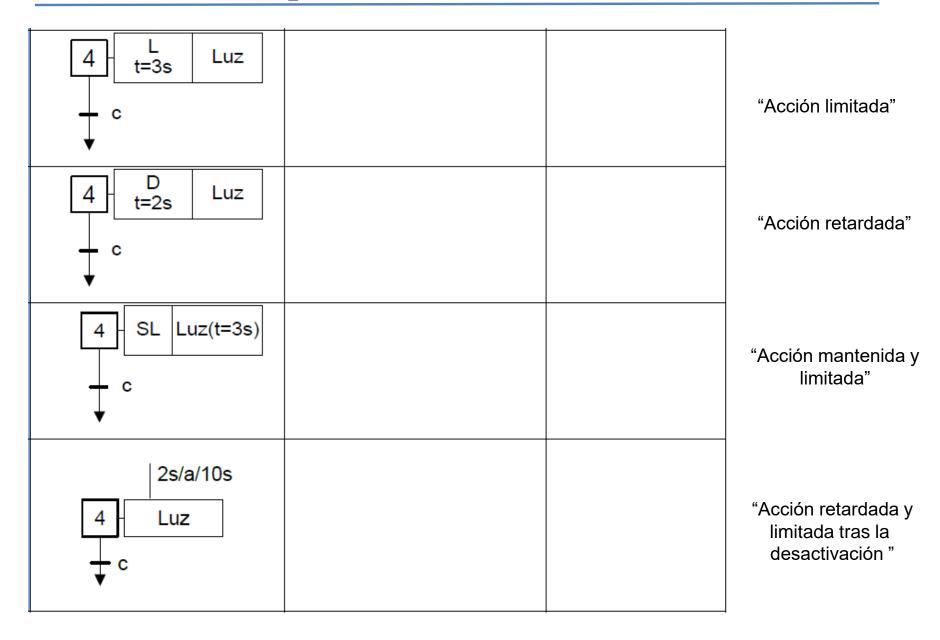

```
Segm.: 5 Acción retardada y limitada después de la desconexión
```

```
U "X11"
U T 1
U T 2
FP M100.0
S "Luz"
```


U T 2 FN M100.1 R "Luz"

U "X11" FP M100.2 R "Luz"


S7 (Ejemplo SA)


Acciones en Grafcet

Acciones en Grafcet

Acciones temporizadas en Grafcet

Consideraciones generales de uso de los temporizadores

- No escatimar en el uso de diferentes temporizadores
 - Evitar reciclar los temporizadores (extensible a contadores).
- Usar, cuando sea posible, temporizadores sin memoria
 - Son más fáciles de mantener.
 - Recodar que SS requiere reseteo explícito.
- Usar soluciones estándar:
 - SE para receptividades temporizadas para activar siguiente etapa.
 - SS para perros-guardián.
 - SE para acciones retardadas (D).
 - SI para acciones limitadas (L).
 - SV para acciones limitadas y mantenidas (SL).