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Hypothesis testing Hypothesis testing framework

HYPOTHESIS TESTING FRAMEWORK

e We start with a NULL HYPOTHESIS (H() that represents the “status quo.”
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HYPOTHESIS TESTING FRAMEWORK

We start with a NULL HYPOTHESIS (Hj) that represents the “status quo.”

We also have an ALTERNATIVE HYPOTHESIS (H 4) that represents our research question, i.e.
what we're testing for, our claim.

We conduct a hypothesis test under the assumption that the null hypothesis is true, either
via simulation or traditional methods based on the central limit theorem.

If the test results suggest that the data do not provide convincing evidence for the
alternative hypothesis, we stick with the null hypothesis. If they do, then we reject the null
hypothesis in favor of the alternative.
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Hypothesis testing Hypothesis testing framework

NUMBER OF COLLEGE APPLICATIONS

A survey conducted at a certain university asked how many colleges students applied to, and 206 students
responded to this question. This sample yielded an average of 9.7 college applications with a standard deviation
of 7. College Board website states that counselors recommend students apply to roughly 8 colleges. Do these
data provide convincing evidence that the average number of colleges all students at that university apply to is
higher than recommended?

http://wuw.collegeboard.com/student/apply/the-application/151680.html
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SETTING THE HYPOTHESES

e The PARAMETER OF INTEREST is the average number of schools applied to by all students at
a given university.
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Hypothesis testing Hypothesis testing framework

SETTING THE HYPOTHESES

The PARAMETER OF INTEREST is the average number of schools applied to by all students at
a given university.

There may be two explanations why our sample mean is higher than the recommended 8
schools.

¢ The true population mean is different.
e The true population mean is 8, and the difference between the true population mean and the sample
mean is simply due to natural sampling variability.

We start with the assumption the average number of colleges students apply to is 8 (as
recommended)
Ho: p<38

We test the CLAIM that the average number of colleges students apply to is greater than 8

Hy: p>8
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Hypothesis testing Conditions for inference

NUMBER OF COLLEGE APPLICATIONS - CONDITIONS

Which of the following is not a condition that needs to be met to proceed with this hypothesis
test?

® Students in the sample should be independent of each other with respect to how many
colleges they applied to.

® Sampling should have been done randomly.

® The sample size should be less than 10% of the population of all students at that university.

® There should be at least 10 successes and 10 failures in the sample.

® The distribution of the number of colleges students apply to should not be extremely skewed.
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Which of the following is not a condition that needs to be met to proceed with this hypothesis
test?

® Students in the sample should be independent of each other with respect to how many
colleges they applied to.

® Sampling should have been done randomly.
® The sample size should be less than 10% of the population of all students at that university.

@ There should be at least 10 successes and 10 failures in the sample.

® The distribution of the number of colleges students apply to should not be extremely skewed.
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Hypothesis testing Formal testing using p-values

TEST STATISTIC

In order to evaluate if the observed sample mean is unusual for the hypothesized sampling
distribution, we determine how many standard errors away from the null it is, which is also called
the TEST STATISTIC.
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Hypothesis testing Formal testing using p-values

TEST STATISTIC

In order to evaluate if the observed sample mean is unusual for the hypothesized sampling
distribution, we determine how many standard errors away from the null it is, which is also called
the TEST STATISTIC.

The sample mean is 3.4 standard errors away
from the hypothesized value. Is this consid-
ered unusually high? That is, is the result
STATISTICALLY SIGNIFICANT?
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Hypothesis testing Formal testing using p-values

TEST STATISTIC

In order to evaluate if the observed sample mean is unusual for the hypothesized sampling
distribution, we determine how many standard errors away from the null it is, which is also called
the TEST STATISTIC.

The sample mean is 3.4 standard errors away
from the hypothesized value. Is this consid-
ered unusually high? That is, is the result
STATISTICALLY SIGNIFICANT?

T T
H=8 X=9.7 Yes, and we can quantify how unusual it is
7 using a p-value.
T~ Np=89SFE=———=0.5
(n 506 )
7 = T-8 _ 3.4
0.5
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Hypothesis testing Formal testing using p-values

P-VALUES

e We then use this test statistic to calculate the P-VALUE, the probability of observing data at
least as favorable to the alternative hypothesis as our current data set, if the null hypothesis
were true.
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Hypothesis testing Formal testing using p-values

P-VALUES

e We then use this test statistic to calculate the P-VALUE, the probability of observing data at
least as favorable to the alternative hypothesis as our current data set, if the null hypothesis
were true.

e If the p-value is Low (lower than the significance level, «, which is usually 5%) we say that it
would be very unlikely to observe the data if the null hypothesis were true, and hence
REJECT Hp.

e If the p-value is HIGH (higher than o) we say that it is likely to observe the data even if the
null hypothesis were true, and hence DO NOT REJECT Hj.
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Hypothesis testing Formal testing using p-values

NUMBER OF COLLEGE APPLICATIONS - P-VALUE

P-VALUE: probability of observing data at least as favorable to H,4 as our current data set (a
sample mean greater than 9.7), if in fact H were true (the true population mean was 8).
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Hypothesis testing Formal testing using p-values

NUMBER OF COLLEGE APPLICATIONS - P-VALUE

P-VALUE: probability of observing data at least as favorable to H,4 as our current data set (a
sample mean greater than 9.7), if in fact H were true (the true population mean was 8).

=9.7

x|

n=8

P(z>9.7| pu=8)=P(Z > 3.4) = 0.0003
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Hypothesis testing Formal testing using p-values

NUMBER OF COLLEGE APPLICATIONS - MAKING A
DECISION

¢ p-value = 0.0003
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Hypothesis testing Formal testing using p-values

NUMBER OF COLLEGE APPLICATIONS - MAKING A
DECISION

p-value = 0.0003

o If the true average of the number of colleges students applied to is 8, there is only 0.03% chance of
observing a random sample of 206 students who on average apply to 9.7 or more schools.

e This is a pretty low probability for us to think that a sample mean of 9.7 or more schools is likely to
happen simply by chance.

Since p-value is low (lower than 5%) we reject Hy.
The data provide convincing evidence that students apply to more than 8 schools on average.

The difference between the null value of 8 schools and observed sample mean of 9.7 schools
is not due to chance or sampling variability.
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Hypothesis testing Formal testing using p-values

A poll by the National Sleep Foundation found that college students average about 7 hours of sleep per night. A sample of 169
college students taking an introductory statistics class yielded an average of 6.88 hours, with a standard deviation of 0.94 hours.
Assuming that this is a random sample representative of all college students (bit of a leap of faith?), a hypothesis test was conducted
to evaluate if college students on average sleep less than 7 hours per night. The p-value for this hypothesis test is 0.0485. Which

of the following is correct?

o Fail to reject Hy, the data provide convincing evidence that college students sleep less than 7
hours on average.

® Reject Hy, the data provide convincing evidence that college students sleep less than 7 hours
on average.
® Reject Hp, the data prove that college students sleep more than 7 hours on average.

® Fail to reject Hy, the data do not provide convincing evidence that college students sleep less
than 7 hours on average.

® Reject Hp, the data provide convincing evidence that college students in this sample sleep
less than 7 hours on average.
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of the following is correct?

o Fail to reject Hy, the data provide convincing evidence that college students sleep less than 7
hours on average.

® Reject Hy, the data provide convincing evidence that college students sleep less than 7 hours
on average.
® Reject Hp, the data prove that college students sleep more than 7 hours on average.

® Fail to reject Hy, the data do not provide convincing evidence that college students sleep less
than 7 hours on average.
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less than 7 hours on average.
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Hypothesis testing Two-sided hypothesis testing with p-values

TWO-SIDED HYPOTHESIS TESTING WITH P-VALUES

¢ If the research question was “Do the data provide convincing evidence that the average
amount of sleep college students get per night is different than the national average?”, the
alternative hypothesis would be formulated as follows:

Hy:p=7
Hy:p+7

Stats 13/ 42



Hypothesis testing Two-sided hypothesis testing with p-values

TWO-SIDED HYPOTHESIS TESTING WITH P-VALUES

¢ If the research question was “Do the data provide convincing evidence that the average
amount of sleep college students get per night is different than the national average?”, the
alternative hypothesis would be formulated as follows:

Hy:p=7
Hy:p+7
¢ Hence the p-value would change as well:
p-value
= 0.0485 x 2
= 0.097

In other words, we need to “split” o = 0.05
over two sides (i.e., o/2)
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Hypothesis testing Two-sided hypothesis testing with p-values

HyYPOTHESIS TESTING: STATING THE HYPOTHESIS

e A school publicizes that the proportion of alumni getting a job in the first three months after
graduation is 85%.
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Hypothesis testing Two-sided hypothesis testing with p-values

HyYPOTHESIS TESTING: STATING THE HYPOTHESIS

e A school publicizes that the proportion of alumni getting a job in the first three months after
graduation is 85%.

Hop: p=0.85 (claim)
Ha: p#0.85

e A company advertises that the mean life of its batteries is more than 6 months

Hoy: p<6
Hy: p>6 (claim)

e A car dealership announces that the mean time for an oil change is less than 15 minutes.

Ho: p=>15
Hy: p<15 (claim)

Stats 14 / 42



Hypothesis testing Two-sided hypothesis testing with p-values

RECAP: HYPOTHESIS TESTING FRAMEWORK

©® Set the hypotheses.
® Check assumptions and conditions.
® Calculate a TEST STATISTIC and a p-value.

©® Make a decision, and interpret it in context of the research question.

Stats 15 / 42



Hypothesis testing Two-sided hypothesis testing with p-values

RECAP: HYPOTHESIS TESTING FOR A POPULATION
MEAN

©® Set the hypotheses

e Hy:p = null value
e Hp:p <or>or#null value

® Calculate the point estimate

® Check assumptions and conditions

¢ Independence: random sample/assignment, 10% condition when sampling without replacement
¢ Normality: nearly normal population or n > 30, no extreme skew — or use the t distribution

© Calculate a TEST STATISTIC and a p-value (draw a picture!)

_ H
z =

SE

x;, where SE = —

s

NG

Approach based on the REJECTION RE-

Approach based on the P-VALUE

e |If p-value < «, reject Hy, data provide
evidence for H 4

e If p-value > «, do not reject H, data do
not provide evidence for H 4

Stats

GION

If the z statistic fall within the rejection
region, reject H, data provide evidence
for H

If the z statistic fall outside of the
rejection region, do not reject Hy, data
do not provide evidence for H 4

16 / 42



Hypothesis testing Two-sided hypothesis testing with p-values

HypPOTHESIS TESTING: REJECTION REGION
APPROACH

z = 3.4sd

Rejéction a = 0.05

'R
egion
1.645sd I
|

8.8257
1.645

[l

Iy
o

= sk o

@ Assume Hj is true

@ Find threshold value for which the prob of falling above that value is o, e.g., « = 0.05
(NORMSINV(0.95) = 1.645 = Zo = 8 4+ 1.645 x 7/ V206 = 8.825)

T—p
SE

@ We compute a test statistics from the sample: z =
® Now we compare the two quantities:

T—
SE

z = =34 and 2z, =1.645

e If Z falls inside the rejection region (i.e., the z score is beyond z. ), we reject H (and thus we accept
H.)

e If T does not fall inside the rejection region, we fail to reject Hy
(does not mean that we accept H as true)
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Hypothesis testing Two-sided hypothesis testing with p-values

HYPOTHESIS TESTING: p-VALUE APPROACH

z = 3.4sd

p-value= 0.0003

u =8k

@ Assume Hj is true

Top _ 978 _ gy

@ We compute a test statistics from the sample: z = “- 5E

® Now obtain the p-value:
p(z > 3.4) = 0.0003

e If p-value is below «, we reject H, (and thus we accept H,)
e If p-value is above «, we fail to reject H (does not mean that we accept H as true)
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Hypothesis testing Two-sided hypothesis testing with p-values

HypPOTHESIS TESTING FOR SMALL SAMPLES

If the sample size is small (i.e., below 30):
@ CLT is no longer valid = We require normality of the underlying population

® St.dev. o can no longer be approximated using s within a z statistic = We need to use a
t-statistic with n — 1 df:

Example

A car manufacturer wants to test emission level. The mean emission level 1 must be less than
20 ppm of carbon. Ten engines are manufactured for testing. Can we conclude that this type of
engine meets the pollution standards? Use a = 0.05.

156 162 225 205 164 194 196 179 127 149
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Hypothesis testing Test for Population Proportion

HyPOTHESIS TESTING FOR POPULATION
PROPORTION
A1l. A random sample is selected from a binomial experiment
A2. The sample size n is large, i.e., both npg > 15 and ngo > 15 hold

We thus assume CLT holds and we use the normal distribution as a reasonable approximation for
the sampling distribution of p:

where 05 = +/pogo/n.

Pepsi Challenge

Coca-Cola drinkers participated in a blind taste test where they were asked to taste unmarked cups
of Pepsi and Coke and select their favorite.

Pepsi claim: “More than half the Diet Coke drinkers surveyed said they preferred the taste of the
Diet Pepsi.”

e n = 100 Diet Coke drinkers
e 1z = 56 preferred taste of Diet Pepsi

What can we conclude based on the test?
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Hypothesis testing Tests for Population Variance

HyPOTHESIS TESTING FOR POPULATION
VARIANCE

¢ If the population is normally distributed, then

9 (n—1)s?
X" = 2
follows a x2 distribution with n — 1 degrees of freedom.
e The test statistic for hypothesis test about one population variance is:
5 (n—1)s2

X = 2
90

Population variance

Lower-tail test: Upper-tail test: Two-tail test:
Hy: 0% 2 02 Hy: 0% < ay? H,: 0% = oy
H,: 02 < 0,2 H;: 02> 02 H,:0%# 0y
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Hypothesis testing Decision errors

DECISION ERRORS

Hypothesis tests are not flawless.

In the court system innocent people are sometimes wrongly convicted and the guilty
sometimes walk free.

Similarly, we can make a wrong decision in statistical hypothesis tests as well.

The difference is that we have the tools necessary to quantify how often we make errors in

statistics.

Stats

22/ 42



Hypothesis testing Decision errors

DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.
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DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

Decision
fail to reject Hy reject Ho

Hg true

Truth
the H 4 true
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Hypothesis testing Decision errors

DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

Decision
fail to reject Hy reject Ho
Hg true v

H 4 true Vv

Truth
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Hypothesis testing Decision errors

DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

Decision
fail to reject Hy reject Ho
Hy true v Type 1 Error
Truth
the H 4 true Vv

e A TYPE 1 ERROR is rejecting the null hypothesis when Hy is true.
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DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

Decision
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e A TYPE 1 ERROR is rejecting the null hypothesis when Hy is true.
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Hypothesis testing Decision errors

DECISION ERRORS (CONT.)

There are two competing hypotheses: the null and the alternative. In a hypothesis test, we make
a decision about which might be true, but our choice might be incorrect.

Decision
fail to reject Hy reject Ho
Hy true v Type 1 Error
Truth
ru H 4 true Type 2 Error v

e A TYPE 1 ERROR is rejecting the null hypothesis when Hy is true.
e A TYPE 2 ERROR is failing to reject the null hypothesis when H 4 is true.

¢ We (almost) never know if Hg or H 4 is true, but we need to consider all possibilities.
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Hypothesis testing Decision errors

HyPOTHESIS TEST AS A TRIAL

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
in terms of the null and alternative hypotheses:

Hp : Defendant is not guilty
H 4 : Defendant is guilty

Which type of error is being committed in the following cirumstances?

e Declaring the defendant not guilty when he is actually guilty

e Declaring the defendant guilty when he is actually innocent

Stats 24 / 42
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Hypothesis testing Decision errors

HyPOTHESIS TEST AS A TRIAL

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
in terms of the null and alternative hypotheses:

Hp : Defendant is not guilty
H 4 : Defendant is guilty

Which type of error is being committed in the following cirumstances?

e Declaring the defendant not guilty when he is actually guilty
Type 2 error
¢ Declaring the defendant guilty when he is actually innocent

Type 1 error

Which error do you think is the worse error to make?
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Hypothesis testing Decision errors

HyPOTHESIS TEST AS A TRIAL

If we again think of a hypothesis test as a criminal trial then it makes sense to frame the verdict
in terms of the null and alternative hypotheses:

Hp : Defendant is not guilty

H 4 : Defendant is guilty

Which type of error is being committed in the following cirumstances?
e Declaring the defendant not guilty when he is actually guilty
Type 2 error
e Declaring the defendant guilty when he is actually innocent
Type 1 error
Which error do you think is the worse error to make?

“better that ten guilty persons escape than that one innocent suffer”

— William Blackstone
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Hypothesis testing Decision errors

TYPE 1 ERROR RATE

e As a general rule we reject Hy when the p-value is less than 0.05, i.e. we use a
SIGNIFICANCE LEVEL of 0.05, o = 0.05.
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e As a general rule we reject Hy when the p-value is less than 0.05, i.e. we use a
SIGNIFICANCE LEVEL of 0.05, o = 0.05.

e This means that, for those cases where Hy is actually true, we do not want to incorrectly
reject it more than 5% of those times.
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Hypothesis testing Decision errors

TYPE 1 ERROR RATE
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Hypothesis testing Decision errors

TYPE 1 ERROR RATE

As a general rule we reject Hy when the p-value is less than 0.05, i.e. we use a
SIGNIFICANCE LEVEL of 0.05, o = 0.05.

This means that, for those cases where H is actually true, we do not want to incorrectly
reject it more than 5% of those times.

In other words, when using a 5% significance level there is about 5% chance of making a
Type 1 error if the null hypothesis is true.

P(Type 1 error) = «

This is why we prefer small values of o — increasing « increases the Type 1 error rate.
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Hypothesis testing Choosing a significance level

CHOOSING A SIGNIFICANCE LEVEL

Choosing a significance level for a test is important in many contexts, and the traditional
level is 0.05. However, it is often helpful to adjust the significance level based on the
application.

We may select a level that is smaller or larger than 0.05 depending on the consequences of
any conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small
significance level (e.g. 0.01). Under this scenario we want to be very cautious about
rejecting the null hypothesis, so we demand very strong evidence favoring H 4 before we
would reject Hy.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1 Error, then
we should choose a higher significance level (e.g. 0.10). Here we want to be cautious about
failing to reject Hy when the null is actually false.
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©® SAMPLE SIZE AND POWER

Power and the Type 2 Error rate
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Hg true Type 1 Error, «

Truth

H 4 true

e Type 1 error is rejecting Hp when you shouldn’t have, and the probability of doing so is «
(significance level)
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Decision
fail to reject Hy reject Ho
Hg true 11—« Type 1 Error, «

Truth

H , true | Type 2 Error, 8 POWER, 1 —

Type 1 error is rejecting Ho when you shouldn’t have, and the probability of doing so is «
(significance level)

Type 2 error is failing to reject Hy when you should have, and the probability of doing so is
B (a little more complicated to calculate)

POWER of a test is the probability of correctly rejecting Hp, and the probability of doing so
isl—p

In hypothesis testing, we want to keep « and 3 low, but there are inherent trade-offs.
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TYPE 2 ERROR RATE

If the alternative hypothesis is actually true, what is the chance that we make a Type 2 Error, i.e.
we fail to reject the null hypothesis even when we should reject it?

The answer is not obvious.

If the true population average is very close to the null hypothesis value, it will be difficult to
detect a difference (and reject Hy).

If the true population average is very different from the null hypothesis value, it will be easier
to detect a difference.

Clearly, 3 depends on the EFFECT SIZE (4)
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EXAMPLE - BLOOD PRESSURE

Blood pressure oscillates with the beating of the heart, and the systolic pressure is defined as the peak pressure when a person is at
rest. The average systolic blood pressure for people in the U.S. is about 130 mmHg with a standard deviation of about 25 mmHg.

We are interested in finding out if the average blood pressure of employees at a certain company is greater than the national
average, so we collect a random sample of 100 employees and measure their systolic blood pressure. What are the hypotheses?
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Hp : p =130
Ha :p> 130
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EXAMPLE - BLOOD PRESSURE

Blood pressure oscillates with the beating of the heart, and the systolic pressure is defined as the peak pressure when a person is at
rest. The average systolic blood pressure for people in the U.S. is about 130 mmHg with a standard deviation of about 25 mmHg.

We are interested in finding out if the average blood pressure of employees at a certain company is greater than the national
average, so we collect a random sample of 100 employees and measure their systolic blood pressure. What are the hypotheses?

Hg : p =130
Hp :p > 130

We'll start with a very specific question — “What is the power of this hypothesis test to correctly detect an increase of 2 mmHg in

average blood pressure?”
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CALCULATING POWER

The preceding question can be rephrased as “How likely is it that this test will reject Hy when
the true average systolic blood pressure for employees at this company is 132 mmHg?”
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The preceding question can be rephrased as “How likely is it that this test will reject Hy when
the true average systolic blood pressure for employees at this company is 132 mmHg?”

Hint: Break this down intro two simpler problems

©® Problem 1: Which values of = represent sufficient evidence to reject Hp?
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CALCULATING POWER

The preceding question can be rephrased as “How likely is it that this test will reject Hy when
the true average systolic blood pressure for employees at this company is 132 mmHg?”

Hint: Break this down intro two simpler problems
©® Problem 1: Which values of = represent sufficient evidence to reject Hp?
® Problem 2: What is the probability that we would reject H if z had come from

V100

an = from this distribution?

N (mean = 132, SE = —25_ = 2.5), i.e. what is the probability that we can obtain such
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CALCULATING POWER

The preceding question can be rephrased as “How likely is it that this test will reject Hy when
the true average systolic blood pressure for employees at this company is 132 mmHg?”

Hint: Break this down intro two simpler problems
©® Problem 1: Which values of = represent sufficient evidence to reject Hp?

® Problem 2: What is the probability that we would reject H if z had come from

o T 25 o . . - .
N (mean = 132, SE = 105 = 2.5), i.e. what is the probability that we can obtain such

an = from this distribution?

Determine how power changes as sample size, standard deviation of the sample, «, and effect size
increases.
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PROBLEM 1

Which values of Z represent sufficient evidence to reject Hp?
(Remember Ho : =130, Ha : > 130)

Stats 32 /42



Sample size and power Power and the Type 2 Error rate

PROBLEM 1
Which values of = represent sufficient evidence to reject Hp?
(Remember Hy : pn = 130, Hy : p > 130)
P(Z >2z)<0.05 = z>1.65
> 1.65
S/ f
x > 130+ 1.65 x 2.5 .05
SR 130 134.125
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PROBLEM 1
Which values of Z represent sufficient evidence to reject Hp?
(Remember Hg : pn = 130, Hy : > 130)
P(Z >2z) <005 = z>1.65
B 165
x > 130+ 1.65 X 2.5 .05
T 1810 130 134.125

Any T > 134.125 would be sufficient to reject H at the 5% significance level.
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PROBLEM 2

What is the probability that we would reject Hy if Z did come from N(mean = 132, SE = 2.5).
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PROBLEM 2

What is the probability that we would reject Hy if Z did come from N(mean = 132, SE = 2.5).

This is the same as finding the area above © = 134.125 if & came from N (132,2.5).
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PROBLEM 2

What is the probability that we would reject Hy if Z did come from N(mean = 132, SE = 2.5).

This is the same as finding the area above © = 134.125 if & came from N (132,2.5).

134.125 — 132
z= """ 07
2.5
=0.85
0.8023
P(Z > 0.85) = 1 —0.8023

= 0.1977 r T T
132 134.125

Stats 33 /42



Sample size and power Power and the Type 2 Error rate

PROBLEM 2

What is the probability that we would reject Hy if Z did come from N(mean = 132, SE = 2.5).

This is the same as finding the area above © = 134.125 if & came from N (132,2.5).

134.125 — 132
= —
2.5
=0.85

0.8023

P(Z > 0.85) = 1 — 0.8023

= 0.1977 r T T
132 134.125

o The probability of rejecting Hy : p = 130, if the true average systolic blood pressure of
employees at this company is 132 mmHg, is 0.1977 which is the power of this test (1 — 3).

o Therefore, B = 0.8023 for this test.
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PUTTING IT ALL TOGETHER

Null
distribution

T T T
120 125 130 135 140

Systolic blood pressure
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ACHIEVING DESIRED POWER

There are several ways to increase power (and hence decrease type 2 error rate):
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ACHIEVING DESIRED POWER

There are several ways to increase power (and hence decrease type 2 error rate):

© Increase the sample size.

® Decrease the standard deviation of the sample, which essentially has the same effect as
increasing the sample size (it will decrease the standard error). With a smaller s we have a
better chance of distinguishing the null value from the observed point estimate. This is
difficult to ensure but cautious measurement process and limiting the population so that it is
more homogenous may help.

Stats 35 /42



Sample size and power Power and the Type 2 Error rate

ACHIEVING DESIRED POWER

There are several ways to increase power (and hence decrease type 2 error rate):

© Increase the sample size.

® Decrease the standard deviation of the sample, which essentially has the same effect as
increasing the sample size (it will decrease the standard error). With a smaller s we have a
better chance of distinguishing the null value from the observed point estimate. This is
difficult to ensure but cautious measurement process and limiting the population so that it is
more homogenous may help.

® Increase «, which will make it more likely to reject Ho (but note that this has the side effect
of increasing the Type 1 error rate).
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ACHIEVING DESIRED POWER

There are several ways to increase power (and hence decrease type 2 error rate):

© Increase the sample size.

® Decrease the standard deviation of the sample, which essentially has the same effect as
increasing the sample size (it will decrease the standard error). With a smaller s we have a
better chance of distinguishing the null value from the observed point estimate. This is
difficult to ensure but cautious measurement process and limiting the population so that it is
more homogenous may help.

® Increase «, which will make it more likely to reject Ho (but note that this has the side effect
of increasing the Type 1 error rate).

® Consider a larger effect size. If the true mean of the population is in the alternative
hypothesis but close to the null value, it will be harder to detect a difference.

Stats 35 /42



Sample size and power Power and the Type 2 Error rate

REcCAP - CALCULATING POWER

e Begin by picking a meaningful effect size § and a significance level «

e Calculate the range of values for the point estimate beyond which you would reject Hy at
the chosen « level.

e Calculate the probability of observing a value from preceding step if the sample was derived
from a population where & ~ N(upg, + 6, SE)
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE
Going back to the blood pressure example, how large a sample would you need if you wanted 90%
power to detect a 4 mmHg increase in average blood pressure for the hypothesis that the
population average is greater than 130 mmHg at a = 0.057
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE
Going back to the blood pressure example, how large a sample would you need if you wanted 90%
power to detect a 4 mmHg increase in average blood pressure for the hypothesis that the
population average is greater than 130 mmHg at a = 0.057

Given: Ho:p=130, Ha:p>130, a=0.05, 8=0.10, 0 =25 5=4
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE

Going back to the blood pressure example, how large a sample would you need if you wanted 90%
power to detect a 4 mmHg increase in average blood pressure for the hypothesis that the
population average is greater than 130 mmHg at a = 0.057

Given: Ho:p=130, Ha:p>130, a=0.05, 8=0.10, 0 =25 5=4

STEP 1: Determine the cutoff — in order to reject Hp at o« = 0.05, we need a sample mean that
will yield a Z score of at least 1.65.

z > 130 + 1.65 25
x < 09—
vn
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE
Going back to the blood pressure example, how large a sample would you need if you wanted 90%
power to detect a 4 mmHg increase in average blood pressure for the hypothesis that the
population average is greater than 130 mmHg at a = 0.057

Given: Ho:p=130, Ha:p>130, a=0.05, 8=0.10, 0 =25 5=4

STEP 1: Determine the cutoff — in order to reject Hp at o« = 0.05, we need a sample mean that
will yield a Z score of at least 1.65.

z > 130 + 1.65 25
x < . —
vn

STEP 2: Set the probability of obtaining the above z if the true population is centered at 130 + 4
= 134 to the desired power, and solve for n.

(’>130+16525) 0.9
xX . — ) = U.
P NG

. 25 .
(130 + 165%) — 134

25

P|Z>

—P (Z> 1.65—4‘2@) =0.9

9]

4
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE (CONT.)

You can either directly solve for n, or use computation to calculate power for various n and
determine the sample size that yields the desired power:
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE (CONT.)

You can either directly solve for n, or use computation to calculate power for various n and
determine the sample size that yields the desired power:
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE (CONT.)

You can either directly solve for n, or use computation to calculate power for various n and
determine the sample size that yields the desired power:
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EXAMPLE - USING POWER TO DETERMINE SAMPLE
SIZE (CONT.)

You can either directly solve for n, or use computation to calculate power for various n and
determine the sample size that yields the desired power:

1.0

power
0.4

0.2

T T T T T
0 200 400 600 800 1000
n

For n = 336, power = 0.9002, therefore we need 336 subjects in our sample to achieve the
desired level of power for the given circumstance.
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© STATISTICAL VS. PRACTICAL SIGNIFICANCE
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Statistical vs. practical significance

All else held equal, will the p-value be lower if n = 100 or n = 10,0007
o n =100

® n = 10,000
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Statistical vs. practical significance

All else held equal, will the p-value be lower if n = 100 or n = 10,0007
o n =100

® n = 10,000
Suppose & =50, s =2, Hy: p=49.5, and Hy : p > 49.5.

50 —49.5 50—-49.5 0.5

Zn=100 = 3 = 5 =op = 25 p-value=0.0062
/100 10 ’
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Zn=10000 = 5 = 5 =00 25, p-value~0
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Statistical vs. practical significance

Test the hypothesis Hg : pp = 10 vs. H4 : p > 10 for the following 8 samples. Assume o = 2.

z | 10.05 10.1 | 10.2 |

|
n = 30 | p —value = 0.45 | p — value = 0.39 | p —value = 0.29 |
|

n = 5000 | p —value = 0.39 | p — value = 0.0002 | p — value ~ 0 |
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Statistical vs. practical significance

Test the hypothesis Hg : pp = 10 vs. H4 : p > 10 for the following 8 samples. Assume o = 2.

10.2

T

10.05 ‘ 10.1

n = 30

|
— value = 0.45 ‘ p —value = 0.39 ‘ p —value = 0.29 ‘
|

IE
n = 5000 ‘ p — value = 0.04 ‘ p — value = 0.0002 p — value = 0 ‘

o When n is large, even small deviations from the null (small effect sizes), which may be
considered practically insignificant, can yield statistically significant results.
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Statistical vs. practical significance

Test the hypothesis Ho : 4 =10 vs. H4 : p > 10 for the following 8 samples. Assume o = 2.

T ‘ 10.05 ‘ 10.1 ‘ 10.2 ‘

x

n = 30 ‘ p — value = 0.45 ‘ p —value = 0.39 ‘ p —value = 0.29 ‘

n = 5000 ‘ p — value = 0.04 ‘ p — value = 0.0002 ‘ p — value = 0 ‘

o When n is large, even small deviations from the null (small effect sizes), which may be
considered practically insignificant, can yield statistically significant results.

e Confidence intervals can give us a better idea of the effect size. E.g., we know that the
average salary is . > 100k but, how much higher?
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Statistical vs. practical significance

STATISTICAL VS. PRACTICAL SIGNIFICANCE

¢ Real differences between the point estimate and null value are easier to detect with larger
samples.

e However, very large samples will result in statistical significance even for tiny differences
between the sample mean and the null value (EFFECT SIZE), even when the difference is not
practically significant.

e This is especially important to research: if we conduct a study, we want to focus on finding
meaningful results (we want observed differences to be real, but also large enough to matter).

e The role of a statistician is not just in the analysis of data, but also in planning and design of
a study.

“To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination:

he may be able to say what the experiment died of.” — R.A. Fisher
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