MATEMÁTICAS II	(GIB)	– 23 de	marzo	de	2012

P2 (3 puntos) [A]

Apellidos	
Nombre $Grupo$ $$	

Nota P2

La prueba consta de un test (1 punto) y dos ejercicios de desarrollo.

TEST (1 PUNTO)

- Este test consta de 5 preguntas. Marque con una cruz a lo sumo una opción por pregunta.
- Acierto +0.2 Error -0.08 Blanco 0.

V F

- **1.** Si $f:[a,b] \to \mathbb{R}$ es una función continua con f(a)f(b) < 0, entonces existe un único $c \in (a,b)$ tal que f(c) = 0.
- **2.** Una función $f: \mathbb{R} \to \mathbb{R}$ derivable es creciente si y sólo si $f'(x) > 0 \ \forall x \in \mathbb{R}$.
- X Solution 1. Los límites laterales de $\ln\left(\frac{1}{x^2}\right)$ cuando $x \to 0$ son ambos $+\infty$.
- **4.** La serie $\sum a_n$ es convergente si y sólo si $\lim_{n\to\infty} a_n = 0$.
- **5.** Si $\sum a_n$ es una serie de términos positivos, la sucesión de sumas parciales (s_n) , con $s_n = \sum_{k=1}^n a_k$, es monótona creciente.

EJERCICIOS (2 PUNTOS)

- **1.** [1 punto] Calcule el área delimitada por la función f(x) = |x 1| y el eje x en la región $0 \le x \le a$, con $a \ge 1$.
- 2. [1 punto] Estudie la convergencia de la serie

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + \operatorname{sen}(n \ln n)}}{n^2 + n + 1}.$$

Solución - Ejercicio 1. Reescribamos f(x) = |x - 1| como

$$f(x) = \begin{cases} 1 - x & \text{si } x < 1\\ x - 1 & \text{si } x \ge 1. \end{cases}$$

Para evaluar el área pedida podemos calcular una primitiva de f, que en general será de la forma

$$F(x) = \begin{cases} x - \frac{x^2}{2} + k_1 & \text{si } x < 1\\ \frac{x^2}{2} - x + k_2 & \text{si } x \ge 1. \end{cases}$$

La primitiva F(x) ha de ser continua en x = 1, lo que se traduce en la igualdad $1 + k_1 = k_2$. Por simplicidad podemos tomar, en particular, $k_1 = 0$, con lo que obtenemos una primitiva concreta, esto es,

$$F(x) = \begin{cases} x - \frac{x^2}{2} & \text{si } x < 1\\ \frac{x^2}{2} - x + 1 & \text{si } x \ge 1. \end{cases}$$

El área pedida puede entonces evaluarse como

$$A = F(a) - F(0) = \frac{a^2}{2} - a + 1.$$

Nota: el ejercicio puede resolverse también directamente sumando las áreas de los triangulos delimitados por la función f(x) y el eje x en $0 \le x \le 1$ y en $1 \le x \le a$, es decir, $A_1 = 1/2$ y $A_2 = (a-1)^2/2$; obsérvese que en ambos triángulos la longitud de la base coincide con la altura, siendo éstas 1 y a-1, respectivamente. De esta forma

$$A = A_1 + A_2 = \frac{1}{2} + \frac{(a-1)^2}{2} = \frac{a^2}{2} - a + 1.$$

Ejercicio 2. Basta emplear el criterio de comparación por cociente con la serie armónica:

$$\lim_{n \to \infty} \frac{\frac{\sqrt{n^2 + \operatorname{sen}(n \ln n)}}{n^2 + n + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n\sqrt{n^2 + \operatorname{sen}(n \ln n)}}{n^2 + n + 1} = \lim_{n \to \infty} \frac{\sqrt{1 + \frac{\operatorname{sen}(n \ln n)}{n^2}}}{1 + \frac{1}{n} + \frac{1}{n^2}}.$$
 (1)

En el último paso hemos dividido numerador y denominador entre n^2 . En el último límite, obsérvese que

$$\lim_{n \to \infty} \frac{\operatorname{sen}(n \ln n)}{n^2} = 0$$

por estar el numerador acotado. Además

$$\lim_{n\to\infty}\frac{1}{n}=\lim_{n\to\infty}\frac{1}{n^2}=0$$

por lo que el límite (1) es igual a 1. Esto implica que la serie original tiene el mismo carácter que la armónica

$$\sum_{n=1}^{\infty} \frac{1}{n},$$

siendo por tanto divergente.