Problema 1. Clasificar los puntos críticos de la función $f(x, y) = x^4 + y^4 - x^2 - 2xy - y^2$.

Problema 2. Clasificar los puntos críticos de las funciones

a)
$$f(x, y) = 1 + x^2 + y^2$$

b)
$$f(x, y) = x^2 - (y-1)^2$$

Problema 3. Clasificar los puntos críticos de la función

$$f(x,y) = (x^3 - 3xy + y^3).$$

Problema 4. Clasificar los puntos críticos de la función

$$f(x,y) = (x^2 + y^2) e^{-(x^2+y^2)}$$
.

Problema 5. Clasificar los puntos estacionarios de la función

$$f(x,y) = (8x^2 - 6xy + 3y^2) e^{2x + 3y}.$$

Problema 6. Clasificar los puntos críticos de la función f(x, y) = Sen(x). Cosh(y)(Se define $Cosh(v) = (e^{v} + e^{-v})/2$.

Problema 7. Clasificar los puntos críticos de la función

$$f(x,y) = x - 2y + Ln\left(\sqrt{x^2 + y^2}\right) + ArcTan\left(\frac{y}{x}\right)$$

Problema 8. Hallar la distancia más corta del punto (1,0) a la parábola $y^2 = 4x$.

Problema 9. Dados n números distintos x_1, \ldots, x_n y otros n números y_1, \ldots, y_n (no necesariamente distintos), en general es imposible encontrar una recta f(x) = ax + b que pase por todos los puntos, es decir que $f(x_i) = y_i$ para cada i. Sin embargo puede encontrarse una función lineal con la que el "error cuadrático total"

$$E(a,b) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

sea mínimo. Determinar los valores de a y b para esa curva.

Problema 10. Una placa circular plana tiene la forma del disco $f(x,y) = x^2 + y^2 \le 1$. La placa (incluido su borde) se calienta de modo que la temperatura en cualquier punto (x, y)y) es $T(x, y) = x^2 + 2y^2 - x$. Localizar los puntos de la placa más calientes y más fríos, y hallar la temperatura en dichos puntos.

Problema 11. Hallar los extremos condicionales para las siguientes funciones:

a)
$$f(x, y, z) = x - 2y + 2z \operatorname{si} x^2 + y^2 + z^2 = 1$$

b)
$$f(x, y, z) = xy^2z^3$$
 si $x + 2y + 3z = 1$

c)
$$f(x, y, z) = x y z$$
 si $\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 1 \end{cases}$

a) f(x, y, z) = x - 2y + 2z si $x^2 + y^2 + z^2 = 1$ b) $f(x, y, z) = xy^2z^3$ si x + 2y + 3z = 1c) f(x, y, z) = xyz si $\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 1 \end{cases}$ Problema 12. Sean $a \neq b$ números positivos fijos, hallar los extremos de la función $f(x,y) = x^2 + y^2$ con la condición $\frac{x}{a} + \frac{y}{b} = 1$. Interpretar el problema geométricamente.

Problema 13. Determinar los máximos y mínimos absolutos y relativos de las siguientes funciones y los dominios especificados:

a)
$$f(x, y) = x^2 + y^2 - 12x + 6y \text{ si } x^2 + y^2 \le 25$$

b)
$$f(x, y) = x^2 - xy + y^2 \sin|x| + |y| \le 1$$
.

b)
$$f(x, y) = x^2 - xy + y^2 \text{ si } |x| + |y| \le 1$$
.
c) $f(x, y, z) = x^2 + y^2 + z^2 \text{ si } x^2 + y^2 + z^2 \le 100$

Problema 14. Hallar los puntos de la curva determinada por la intersección de las superficies $x^2 - xy + y^2 - z^2 = 1$ y $x^2 + y^2 = 1$ que están más próximos al origen.

Problema 15. Usando el método de los multiplicadores de Lagrange hallar los extremos relativos de la función w = xyz con las condiciones x + y + z = 3, x + z = 2.

Problema 16. Hallar los extremos del campo escalar f(x, y, z) = x - 2y + 2z sobre la esfera $x^2 + y^2 + z^2 = 1$.

Problema 17. Encontrar los puntos de la superficie $z^2 - xy = 1$ más próximos al origen.

Problema 18. Hallar las distancias máxima y mínima del origen a la curva $5x^2 + 6xy + 5y^2 = 8$.

Problema 19. Encontrar los valores extremos de la función f(x, y) = xy con la condición x + y = 1.

Problema 20. Descomponer un número positivo en tres factores positivos de manera que :

- a) La suma de sus inversos sea mínima.
- b) La suma de sus cuadrados sea mínima.

Problema 21. De todos los paralelepípedos rectangulares cuya suma de las tres dimensiones es 9, hallar el de volumen máximo.

Problema 22. ¿Cuáles deben ser las dimensiones de una bañera rectangular abierta de volumen *V* para que su superficie sea mínima.

Problema 23. Hallar un rectángulo de perímetro 2p de modo que al girar alrededor de uno de sus lados forme un cilindro de volumen máximo.