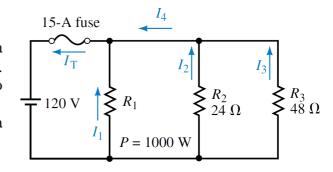
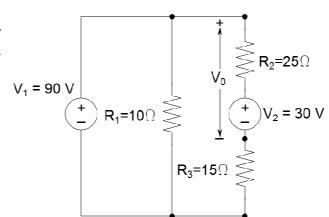
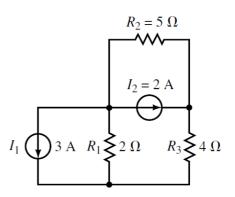
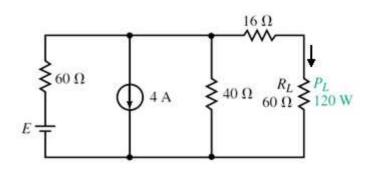

PROBLEMAS DE CIRCUITOS ELECTRÓNICOS

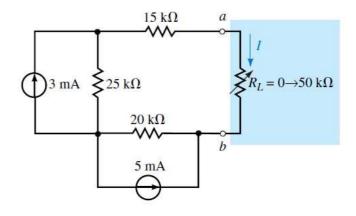

2º Curso de Grado en Ingeniería Informática – 16/17

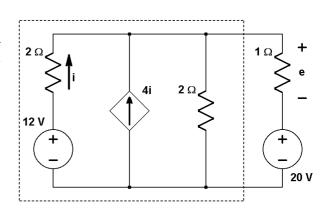
TEMA 1: Repaso de la <u>Teoría de redes lineales</u>


1.-Para el circuito de la figura, calcular la diferencia de potencial en bornas de la resistencia de $8\ \Omega$.

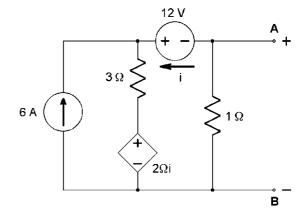

- 2.-Se desea diseñar una luneta térmica para un automóvil con 15 líneas, siendo cada una de ellas resistencia eléctrica. Obtener el valor y la disposición de las mismas para que el circuito disipe una potencia de 50W si usamos una fuente de alimentación de 12V en continua.
- 3.-Para el circuito de la figura
 - a) Determinar las corrientes indicadas si la potencia disipada en R₁ es de 1000W. ¿Soportará el fusible la corriente que lo atraviesa?
 - b) Calcular el valor de R_3 para que la corriente total del circuito sea $I_T = 15$ A.

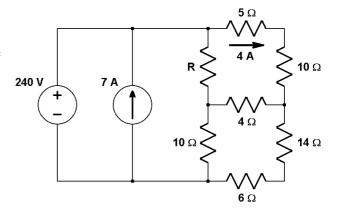

- 4.- Se quiere utilizar una bombilla de 3V y 300 mA para iluminar el dial de una radio de 120V. ¿Cuál será el valor de la resistencia en serie con la bombilla para que ésta no estalle?
- 5.- Obtener las corrientes I_1 , I_2 (que circulan por las resistencias R_1 y R_2 respectivamente) y la tensión V_0 para el circuito de la figura


6.- Calcular las corrientes que circulan por cada una de las resistencias del circuito adjunto escribiendo las ecuaciones correspondientes a cada uno de los nodos.

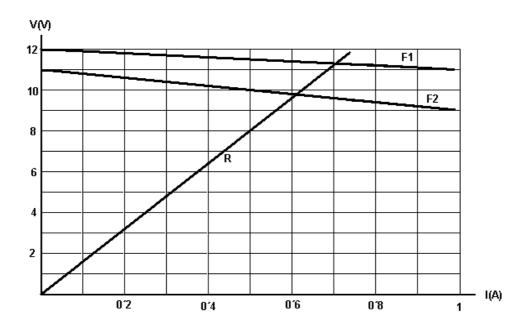

7.- Si la resistencia de carga R_L que aparece en el circuito tiene que disipar 120 W de potencia, calcular el valor de la fuente de voltaje E (suponer que la corriente circula por la resistencia de carga en el sentido indicado en la figura). Comprobar el resultado utilizando el principio de superposición.


- 8.- Para el circuito de la figura,
 - a) Calcular el circuito equivalente de Thévenin entre los terminales de la resistencia de carga.
 - b) Usar dicho circuito equivalente para calcular la corriente I cuando la resistencia de carga vale 0, $10k\Omega$ y $50k\Omega$

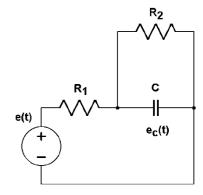

9.- Substituir la porción de red encerrada en la línea de trazos por su equivalente Thévenin, y calcular después la tensión e.


10.- Calcular los equivalentes Norton y Thévenin entre los terminales a y b.

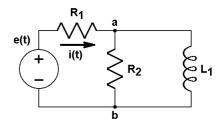
11.- En el circuito de la figura, calcular V_{Th} , I_N y R_{eq} entre los terminales A y B.



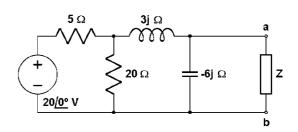
- 12.- En el circuito de la figura, determínese:
 - a) El valor de la resistencia R.
 - b) La potencia suministrada por la fuente de tensión.


13.- Cuando se conecta a una radio de automóvil una batería, proporciona 12.72 V a la radio. Cuando se la conecta a un par de faros, proporciona 12 V a los mismos. Suponga que se puede modelar la radio como una resistencia de 6.36 Ω y que los faros pueden modelarse como una resistencia de 0.6 Ω. ¿Cuáles son los equivalentes de Thévenin y de Norton de la batería?

14.- Disponemos de dos fuentes de alimentación, F1 y F2, y de una resistencia, R, cuyas curvas de regulación y curva característica, respectivamente, se muestran en la figura. Determinar, cuando esos tres elementos se conectan en paralelo, la potencia suministrada por cada una de las fuentes.

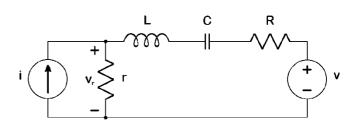

15.- La tensión e(t) del generador del circuito de la figura es: $e(t) = 1V \cos(10^2 t)$, donde la frecuencia angular, ω , está dada en rad/s Hallar la tensión $e_c(t)$ en bornas del condensador.

$$\begin{array}{ll} \text{Datos:} & \mathbf{R_1} = \mathbf{R_2} = \mathbf{1}\Omega; \\ \mathbf{C} = \mathbf{0.01} \ \mathbf{F} \end{array}$$

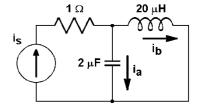


- 16.- Un circuito está formado por tres elementos en serie, los cuales producen una corriente $I = 10 \sin(400t + 70)$ A como resultado de un voltaje $V = 50 \sin(400t + 15)$ V, estando expresada la frecuencia angular en rad/s y los ángulos de fase en grados. Si uno de los elementos es una inductancia de 16 mH, ¿cuáles son los otros elementos?
- 17.- En el circuito de la figura $e(t) = 3\cos(10t)$ V, (ω en rad/s). Calcular el equivalente Thévenin entre los dos puntos indicados y, a posteriori, calcular t(t).

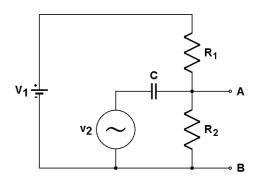
$$\begin{array}{ll} \text{Datos:} & \textbf{R_1} = 2~\Omega; \\ & \textbf{R_2} = 1~\Omega; \\ & \textbf{L_1} = \textbf{0.2}~\text{H}. \end{array}$$



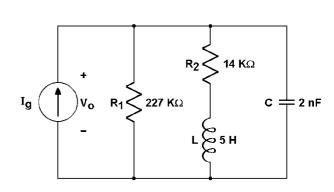
18.- Determinar la impedancia **Z** que hace máxima la potencia transferida por el circuito.



19.- Calcular la tensión v_r (tensión en bornas de la resistencia r).


Datos:
$$v(t) = 26\cos(3t + 30^{\circ}) \text{ V}$$

 $i(t) = 3\cos(2t) \text{ A}$
 $r = R = 2 \Omega$
 $C = 1/4 \text{ F}$,
 $L = 1 \text{ H}$;
 $\omega \text{ en rad/s}$.


20.- La fuente de corriente sinusoidal del circuito está descrita por $i_s(t) = 10.5 \cos(10^5 t)$ A, siendo $\omega = 10^5$ rad/s. Encontrar las respuestas en estado estacionario para i_a , i_b y la tensión en bornas del condensador.

21.- Calcular el valor del voltaje $v_{AB}(t)$ del circuito de la figura, siendo $v_2(t) = V_2 \cos(\omega t)$. Además, se desea obtener en v_{AB} la superposición de una componente continua de valor $0.5 \cdot V_1$ junto con una alterna producida por $v_2(t)$. Calcular la relación entre R_1 y R_2 .

- 22.- La fuente de corriente del circuito de la figura suministra una señal sinusoidal
 - $I_g(t) = I_o \sin(\omega t)$, cuya frecuencia podemos ajustar a voluntad.
 - a) ¿A qué valor habrá que fijar la frecuencia para que la corriente I_g se encuentre en fase con la tensión soportada por la fuente V_g ?
 - b) A la frecuencia anterior, ¿cuánto vale la tensión V_o si $I_o = 250 \,\mu\text{A}$?

