
DVA339 HT18 - LECTURE 2 grammars and parsing



ACADEMIC HONESTY

Plagiarism and other forms of academic misconduct
 make sure you understand what is not allowed and why
 see, e.g., Academic Honesty and Integrity at Chalmers

Don’ts
 you are not allowed to cooperate on the written assignments
 you are not allowed to plagiarize or paraphrase other peoples work 

(including the slides for you presentation!)
 You are not allowed to copy otherwise make use of other peoples code.

By historic necessity
 all handed in material will be subjected to automatic plagiarism control!

https://student.portal.chalmers.se/en/chalmersstudies/joint-rules-and-directives/Documents/20090920_Academic_Honesty.pdf


WORD OF WARNING

Do no publish your code on the net!
 it’s not prohibited, but …

… if someone else copies your code you may be subject to
disciplinary action, where you have to prove authorship of the 
code
 quite unnecessary stress even if you did nothing wrong!

I understand the will to share and the concept of freedom of
information
 but this is not the best way to support it.



BONUS GRADE 

If you pass all labs before the written exam (January 17 
2019) your final grade on the course will be one higher 
than the grade on the written exam.
 given that you passed the exam. 
 i.e., the additional grade will not pass you on the course if you 

failed the written exam

Note that the bonus grade only applies to the first exam 
attempt, and not re-exams.



LAST TIME

Lexical analysis
 string of characters to sequence of tokens

Lexical tokens, token types
 identifiers, keywords, operators, separators, numbers, …

Specifying token types
 regular expressions

Lab 1.1- how is it going?



TODAY

Context-free grammars
 derivations, derivation trees

Introduction to parsing
 depth first search

Ambiguity

Rewriting grammars 
 associativity
 precedence
 left factoring

Abstract syntax



AN EXAMPLE GRAMMAR

Non-terminals
 S, L, E (in capital letters)
 sometimes called syntactic categories

Terminals
 corresponding to the tokens
 id, num – token types (in italics)
 ; := + ( ) , print – lexemes (in bold)

Start non-terminal
 S 

Production rules (selected)
 S → S; S
 S → id := E
 written S → S; S | id := E

S → S; S 
S → id := E 
S → print ( L )
E → id
E → num
E → E + E 
E → ( S, E )
L → E 
L → L, E



DERIVATIONS

A derivation 
 starts in the start non-terminal (the start symbol)
 in this case S
 proceeds by replacing one non-terminal 

according to one of the possible production 
rules

 until no more non-terminals exist

(1) S → S; S 
(2) S → id := E 
(3) S → print ( L )
(4) E → id
(5) E → num
(6) E →  E + E 
(7) E → ( S, E )
(8) L → E 
(9) L → L, E

S ⇒1 S;S ⇒2 x := E; S ⇒5 x := 23; S ⇒3
x := 23; print ( L ) ⇒8 x := 23; print ( E ) ⇒4
x := 23; print ( x )



EXERCISE

Derive x := 3; y := (z := 5, x + z)

Is the derivation unique?

(1) S → S; S 
(2) S → id := E 
(3) S → print ( L )
(4) E → id
(5) E → num
(6) E →  E + E 
(7) E → ( S, E )
(8) L → E 
(9) L → L, E



DERIVATIONS

When a production rule has more than one non-terminal on the right hand side
 S → S; S

Derivation can continue on either

Does it matter?

S ⇒1 S;S ⇒2,5 x:=1; S ⇒2,5 x:=1; y:=2

S ⇒1 S;S ⇒2,5 S; y:=2 ⇒2,5 x:=1; y:=2



LEFT AND RIGHT DERIVATIONS

When the left-most non-terminal is always selected we have a left derivation

L: S ⇒1 S;S ⇒2,5 x:=1; S ⇒2,5 x:=1; y:=2

When the right-most non-terminal is always selected  we have a right derivation

R: S ⇒1 S;S ⇒2,5 S; y:=2 ⇒2,5 x:=1; y:=2

There will always be a right and a left derivation
 sometimes they coincide (when?)
 are there more possible derivations?



ORDER OF REWRITING

Some types differences in order of rewriting are unimportant
 yet give rise to different derivations
 L: S ⇒1 S;S ⇒2,5 x:=1; S ⇒2,5 x:=1; y:=2
 R: S ⇒1 S;S ⇒2,5 S; y:=2 ⇒2,5 x:=1; y:=2

Derivations are linear, and force a total order on rewriting steps

How can we relax this?
 partial order necessary, certain rewriting steps must occur before other
 other rewriting steps can occur in either order (or in parallel)

What decides this?



INDUCED ORDER

The production rules induce an order

For context-free grammars, grammars with 
 a single non-terminal on the left hand side of 

production rules
 an arbitrary number of terminals and non-

terminals on the right hand side of production rules

we have that
 all non-terminals on the right hand side of a rule 

can be rewritten in any order (or in parallel)
 the non-terminal on the left hand side of the rule 

must be replaced before the non-terminals 
introduced by the rewriting (duh!)

For production rule
 S → S; S

consider the derivation
 S1 ⇒1 S2; S2 ⇒1 S2; S3; S3

where superscripts denote necessary order



DERIVATION TREES

For production rule
 S → S; S

consider the derivation
 S1 ⇒1 S2; S2 ⇒1 S2; S3; S3

A more reasonable representation is a tree
 the level in the tree represent the necessary order

Rewriting a non-terminal with a production rule
 adds the right hand side of the rule as children to the non-terminal

As an added bonus it is clearer
 which non-terminal is rewritten with which production rule

The leaves correspond to the final rewriting product

S2

S1

; S2

S3 ; S3



EXERCISE

Create the derivation tree for x:=1; y:=2
 is it unique?

(1) S → S; S 
(2) S → id := E 
(3) S → print ( L )
(4) E → id
(5) E → num
(6) E →  E + E 
(7) E → ( S, E )
(8) L → E 
(9) L → L, E



EXERCISE

Create the derivation tree for x:=1; y:=2
 is it unique?
 Yes

(1) S → S; S 
(2) S → id := E 
(3) S → print ( L )
(4) E → id
(5) E → num
(6) E →  E + E 
(7) E → ( S, E )
(8) L → E 
(9) L → L, E

S

S S;

E:=x

1 2

E:=y



RELATION TO DERIVATIONS

Derivation tree for x:=1; y:=2
 result is given by left-to-right traversal of leaves

Left derivations correspond to left-to-right inorder
traversal of tree
 S ⇒1 S; S ⇒2 x:=E; S ⇒5 
x:=1; S ⇒2 x:=1; y:=E ⇒5 x:=1; y:=2

Right derivations correspond to right-to-left inorder
traversal of tree
 S ⇒1 S; S ⇒2 S; y:=E ⇒5
S; y:=2 ⇒2 x:=E; y:=2 ⇒5 x:=1; y:=2

S

S S;

E:=x

1 2

E:=y



EXERCISE

Create the derivation tree for x := (y := 1, y + 1)
 How many derivations does it represent?

(1) S → S; S 
(2) S → id := E 
(3) S → print ( L )
(4) E → id
(5) E → num
(6) E →  E + E 
(7) E → ( S, E )
(8) L → E 
(9) L → L, E



INTRODUCTION TO PARSING generating derivation trees



CREATION OF DERIVATION TREES

Given a program
 1+2

and a grammar

E → T | T + E

T → NUM | ( E )

How can we construct a derivation tree corresponding to the program in the 
grammar? 



TWO APPROACHES

Top down

Start in S, find derivation to program
 simpler to understand, intuitively corresponds to 

the derivation process
 slow in general (n3)
 fast subsets exists (LL(1) – Lecture 3) 
 LL(1) easy to implement by hand

Bottom up

Start with program, rewrite backwards to S
 harder to understand
 slow in general (n3)
 fast subsets exists (LR – Lecture 4)
 very cumbersome to implement by hand
 more used, subsets more expressive than LL(1)



PARSING AS A SEARCH PROBLEM

Push E on stack

1. If stack is empty, fail
 Let X be top of stack

2. if X is equal to input, done

3. if X is incompatible with input or if X does not 
contain any more non-terminals

 backtrack (pop, and continue with 1)

4. Let A be left-most non-terminal in X

5. Select next unused rule P for A in X
 if no more rules, backtrack
 mark rule as used for A in X

6. Push result of applying P to A in X 

7. Continue with 1

Try program 1 + 2 in grammar 

E → T | T + E
T → num | ( E )

What is the resulting tree?
 this tree is a view of the search

E

T T + E

1 + E

1 + T

1 + 2

(E)

1



WHAT IS THE DERIVATION TREE

The derivation tree lives on the stack
 updated by the selected rules E

T T + E

1 + E

1 + T

1 + 2

(E)

1

E
E

T + E

1

E

T + E

T1

E

T + E

2

T1

E

T + E



ORDER MATTERS

Consider a small rearrangement of the 
grammar

E → T + E | T
T → ( E ) | num

The resulting search tree is much bigger!

E

T + E

1 + E

1 + T + E 1 + T

1 + 2

( E ) + E

1 + 2 + E 1 + ( E ) + E
1 + ( E )



IS IT REALLY THIS SIMPLE?

Sadly not!

What about left recursive grammars?
 A → Aa

The left recursion does not have to be immediate, mutually left recursive is 
problematic too

 A → Bb
 B → Cc
 C → Aa

For any cycle length 
 it's the presence of unproductive cycles that may be a problem.



LEFT RECURSION

Naïve search may non-terminate on left-
recursive grammars
 it's possible to enhance the algorithm with cycle 

detection
 not very efficient

Other solution – rewrite grammar to 
remove left recursion!
 today or next time depending on time

A → Aa | cA

Aa

Aaa

Aaaa

Aaaaa



COMPLEXITY

The algorithm presented can be seen as a variant of depth first search.

The worst case complexity is exponential in the length of the input.
 not that hard to construct grammars with this behavior (try!)

Not very practical
 in the current form
 but for some grammars it can be made very efficient!
 predictive recursive descent – lecture 3



AMBIGUITY



EXERCISE

Consider the grammar of expressions
 create a derivation tree for 10 * x + y

E → E + E
| E * E
| E - E
| E / E
| ( E )
| id
| num



EXERCISE

Consider the grammar of expressions
 create a derivation tree for 10 * x + y

One program, two derivation trees
 does it matter?

E → E + E
| E * E
| E - E
| E / E
| ( E )
| id
| num

E

*
10

x
+

y

EE

E E

E

+

x
* y

EE

E E

10



AMBIGUITY

One program, two derivation trees
 Does it matter? Yes

Original program 
 10 * x + y

The trees correspond to
 (10 * x) + y
 12 * (x + y)
 which is correct?

E

*
10

x
+

y

EE

E E

E

+

x
* y

EE

E E

10



AMBIGUITY

A grammar is ambiguous if there exists at least one program
 with at least two different derivation trees

Problems with ambiguity
 parsing should create abstract syntax tree
 more than one derivation tree means more than one abstract syntax tree
 parsing should be deterministic, i.e., same result for same input
 parser must chose one of the possible trees
 the choice may change the semantics of the program 



EXERCISE

Is the grammar of straight line programs ambiguous? S → S; S 
S → id := E 
S → print ( L )
E → id
E → num
E → E + E 
E → ( S, E )
L → E 
L → L, E



EXERCISE

Is the grammar of straight line programs ambiguous?
 Indeed, consider S; S; S

Does it matter?

S → S; S 
S → id := E 
S → print ( L )
E → id
E → num
E → E + E 
E → ( S, E )
L → E 
L → L, E

S

;

;

SS

S S

S

;

;

SS

S S



HANDLING AMBIGUITY

Even though ambiguity doesn't always 
matter we want to avoid it

We do this by rewriting the grammar to 
a grammar that is not ambiguous

For the straight line programs we can do 
this by factoring out the primitive 
statements

This forces the derivation trees to a the 
following form

S → T; S | T 
T → id := E 
T → print ( L )

S

;

;

ST

T S



REWRITING EXPRESSIONS

For expressions we must rewrite the 
grammar to take
 precedence, and 
 associativity into account

The first applied rule 
 root, lowest precedence 

The last applied rule
 leaf, highest precedence 

How can we encode this in the grammar?
 make sure that productions corresponding to 

operators with lower precedence occur earlier 
in the grammar

The only possible derivation tree for
 10 * x + y

should be (equivalent to)

E

+

x
* y

EE

E E

10

prevent from 
being *



ASSOCIATIVITY AND PRECEDENCE

Precedence of operators (lowest first)
 + -
 * /

a * b + c = (a * b) + c

a * b – c = (a * b) – c 

What about associativity?
 + * are (both left and right) associative
 (a + b) + c = a + (b + c)

 - / are left associative
 a – b – c = (a – b) – c



REWRITING EXPRESSIONS

The first applied rule 
 root, lowest precedence 

The last applied rule
 leaf, highest precedence 

First applied rule
 earliest in grammar

Last applied rule 
 last in grammar

E → E + E | E - E
| F

F → F * F | F / F 
| T

T → ( E ) | id | num

E → E + E
| E * E
| E - E
| E / E
| ( E )
| id
| num



DID IT WORK?

Again, try 10 * x + y 

E → E + E
| E - E
| F

F → F * F 
| F / F 
| T

T → ( E ) | id | num

E

+

*
y

E

F

E

T

F

x

F

T

10

F

T



EXERCISE

Is the result unambiguous?

E → E + E
| E - E
| F

F → F * F 
| F / F 
| T

T → ( E ) | id | num



EXERCISE

Is the result unambiguous? No, try, e.g., 1 + 2 + 3 
 can be derived left associatively (1 + 2) + 3
 can be derived right associatively 1 + (2 + 3)
 ok, from an operator perspective
 but ambiguous

Same for * and /
 but there only the left associative derivation 

should be possible

How?

E → E + E
| E - E
| F

F → F * F 
| F / F 
| T

T → ( E ) | id | num



ASSOCIATIVITY

Left associative 
 left recursive trees
 consider 10 – x – y 

Left recursive trees
 left recursive grammar

What about + and *
 does it matter?
 no, pick one

E

-

x
- y

EE

E E

10

prevent from 
being -



REWRITING EXPRESSIONS

Precedence
 + -
 * /

Associativity
 + * left associative (by choice)
 / - left associative (by necessity)

Why did we pick + and * to be left 
associative?
 could we have done otherwise?

E → E + F | E - F | F

F → F * T | F / T | T

T → ( E ) | id | num



LEFT RECURSION

… but left associative operators give 
left recursive grammars ...

Most unfortunate for predictive recursive 
descent parser

Fortunately, this form of immediate left 
recursion is quite simple to remove

E → E + F | E - F | F

F → F * T | F / T | T

T → ( E ) | id | num



LEFT FACTORING

Consider the following simplified 
expression grammar

Possible derivations are
 F
 F + F
 F + F + F 
 …

Can be written 
 F (+ F)*

Is there a way to express the same 
language
 that is not left recursive?

E → E + F | F



LEFT FACTORING

Consider the following simplified 
expression grammar

Possible derivations are
 F
 F + F
 F + F + F 
 …

Can be written 
 F (+ F)*

Is there a way to express the same 
language
 that is not left recursive?

Yes!

Same derivations, but
 right recursive!

E → E + F | F

E → F T
T → + F T | λ



LEFT FACTORING

Immediate left recursion, general case

Rewrite as follows

α and β are meta variables
 that match agains the grammatical rules

Compare

and 

E → E + F | FA → A α | β

A ::= β T
T ::= α T | λ

E → F T
T → + F T | λ



EXERCISE

Immediate left recursion, general case

Rewrite as follows

Left factorize the grammar for comma 
separated lists of numbers
L → L, num | λ

A → A α | β

A ::= β T
T ::= α T | λ



ABSTRACT SYNTAX TREES



ABSTRACT SYNTAX

Consider our rewritten expression grammar

The derivation trees contain a lot of unnecessary information
 separators (punctuation) only present to disambiguate

 ( )

 syntactic categories only introduced to disambiguate
 F and T (to encode precedence)

E

+

*
y

FE

TF

x

T

10

F

T

E → E + F | E - F | F
F → F * T | F / T | T
T → ( E ) | id | num



ABSTRACT SYNTAX

Later compiler stages are only interested 
in information that is important for the 
semantics of the program

For 10 * x + y 
Abstract syntax tree

Derivation tree/concrete syntax tree

E

+

*
y

FE

TF

x

T

10

F

T

+

y*

x10



DESIGNING ABSTRACT SYNTAX

Keep only the essentials
 ambiguities not an issue – will be generated from parsing unambiguous grammars
 remove all syntax that only guides the parsing process 

For the expressions, start in the grammar that was before the encoding of 
associativity and precedence

Remove unnecessary decorations
E → E + E | E * E | E - E | E / E | ( E ) | id | num

E → E + E | E * E | E - E | E / E | id | num



DESIGNING ABSTRACT SYNTAX

Give proper names (easier to map to code)

Each syntactic category corresponds to one superclass and each production 
corresponds to one class

Contract operators to reduce number of needed classes

E → BOP OP E E | ID id | NUM num
OP → ADD | SUB | MUL | DIV

E → ADD E E | MUL E E | SUB E E | DIV E E | ID id 
| NUM num

BOP ADD 

ID yBOP MUL

ID xNUM 10



MAPPING TO CODE

Chose longer names!
 only to illustrate mapping

E → BOP OP E E
| ID id 
| NUM num

OP → ADD | SUB | MUL | DIV

public class E {}

public class BOP : E {
public OP op; 
public E left, right;  
public enum OP { ADD, SUB, MUL, DIV } 

}
}
public class ID : E {
public string id;

}
public class NUM : E {
public int num;

}



EXERCISE

Create abstract syntax for
S → S; S 
S → id := E 
S → print ( L )
E → id
E → num
E →  E + E 
E → ( S, E )
L → E 
L → L, E



EXERCISE

Create abstract syntax for Remove all extra decoration
S → S; S 
S → id := E 
S → print ( L )
E → id
E → num
E →  E + E 
E → ( S, E )
L → E 
L → L, E

S → S; S 
S → id := E 
S → print L 
E → id
E → num
E →  E + E 
E → S, E 
L → E 
L → L, E



EXERCISE

Replace list encodings with actual lists

Notice new syntactic category P for 
programs 

It does not matter that we extend the 
language (the empty list)
 print statements without parameters will never be 

generated from the original grammar

Introduce proper names

Only contains the essentials, and translates 
well to classes

P → [S] 
S → id := E 
S → print [L]
E → id
E → num
E →  E + E 
E → [S], E 

P → Prog [S] 
S → Asn id E 
S → Print [L]
E → Var id
E → Num num
E →  Edd E E 
E → Let [S] E 



NEXT TIME

Predictive recursive descent!


