Lab 4
Sequences

Sup’Biotech 3
Python

Pierre Parutto

October 19, 2016

SUP

biotech

PARIS

l§ott£cli Lab 4: Sequences

PARIS

Document Property

Authors Pierre Parutto
Version 1.0
Number of pages 9

Contact

Contact the assistant team at: supbiotech-bioinfo-bt30@googlegroups.com

Copyright

The use of this document is strictly reserved to the students from the Sup’Biotech school. This
document must have been downloaded from www.intranet.supbiotech.fr, if this is not the case
please contact the author(s) at the address given above.

(©Assistants Sup’Biotech 2016.

1/9

supbiotech-bioinfo-bt3@googlegroups.com
www.intranet.supbiotech.fr

SUP Lab 4: Sequences

e 2015 - 2016
Contents

1 Introduction 3

2 DNA Sequence Characteristics 3

2.1 Adenine Frequency 3

Example oL 3

2.2 Nucleotide Frequency L 3

Example oL 3

3 Modification Of Sequences 4

3.1 Complementary Strand 4

Example oo e 4

3.2 Reverse Complementary Sequence 5

Example oL 5

3.3 Translation Of An Open Reading Frame 6

Example oL e 6

4 Distance Between DN A Sequences 7

4.1 Hamming Distance L L e 7

Example oL e 7

4.2 Weighted Distance e e e 8

Example oo 9

2 /9

bSUli Lab 4: Sequences
iotec 2015 - 2016

PARIS

1 Introduction

In this fifth lab, we will manipulate strings, lists and dictionaries.

2 DNA Sequence Characteristics

2.1 Adenine Frequency

Write a function freq_A(s: str) -> float that returns the frequency of the adenine nucleotide
in the DNA sequence s.

Example

>>> freq_A("AAATGT")
0.5

>>> freq_A("TGTGTCG")
0.0

Correction:
First version with a while loop:

def freq_A(s):

i=20
fA = 0.0
while i < len(s):
if s[i] == "A":
fA = fA + 1

i=1i+1
return fA / len(s)

Second version with a for loop:

def freq_A(s):

fA = 0.0
for e in s:
if e == "A":
fA = fA + 1

return fA / len(s)

You can see that this version is shorter than the first one, only the logic of the function remains,
all the technical details have been abstracted away.

2.2 Nucleotide Frequency

Write a function freq_nuc(s: str) -> dict that returns the frequency of each nucleotide on
the DNA sequence s. The returned value is a dictionary of the form: nucleotide:float.

Example

>>> freq_nuc("ATGC")
{"A":0.25,"T":0.25,"G":0.25,"C":0.25}
>>> freq_nuc("AAAGCG")

3/9

l§olrJec!i Lab 4: Sequences

’{”A":O.S,"T”:0.0,"G”:0.33333,"C": 0.16666}

Correction:
A first version with a while loop:

def freq_nuc(s):
d = {"A":0.0, "T":0.0, "G":0.0, "C":0.0}

if len(s) == 0:
return d

cpt = 0

while cpt < len(s):
d[slcpt]l] = dlslcpt]l] + 1.0
cpt = cpt + 1

tmp = "ATGC"

i=0

while i < len(tmp):
d[tmp[i]] = d[tmp[il] / len(s)
i=1+1

return d

The second version with a for loop:

def freq_nuc(s):
d = {"4":0.0, "T":0.0, "G":0.0, "C":0.0}

if len(s) ==
return d

for c in s:
dlc] = dlc] + 1.0

for n in "ATGC":
d[n] = d[n] / len(s)

return d

3 Modification Of Sequences

3.1 Complementary Strand

Write a function complementary_DNA(s: str) -> str that returns the complementary sequence
corresponding to the DNA sequence s.

Example

>>> complementary_DNA("ATTTGC")
"TAAACG"

4/9

bSUIi Lab 4: Sequences
08 2015 - 2016

PARIS

>>> complementary_DNA("CCGTA")
"GGCAT"

Correction:
A first version with a while loop:

def complementary DNA(s):
res = ""
i=0
ey - AOADGEND,, EDeOED) TEDyIED, Tl T
while i < len(s):
res = res + compl[s[i]]
i=1i+1
return res

And the second (shorter) version with a for loop:

def complementary_DNA(s):
res = ""
comp = {"A":"T", "G":"C", "C":"G", "T":"A"}
for e in s:
res = res + comple]
return res

3.2 Reverse Complementary Sequence

Write a function rev_complementary _DNA(s: str) -> str that returns the reverse complemen-
tary sequence corresponding to the DNA sequence s.

Example

>>> rev_complementary_DNA("ATTTGC")
"GCAAAT"

>>> rev_complementary_DNA("CCGTA")
"TACGG"

Correction:
A first version with a while loop:

def rev_complementary_DNA(s):
res = ""
i=0
comp = {"A":"T", "G":"C", "C":"G", "T":"A"}
while i < len(s):
res = comp[s[i]] + res
i=1+1
return res

And the second (shorter) version with a for loop:

5 /9

SUP

biotech

PARIS

Lab 4: Sequences

2015 - 2016

def rev_complementary_DNA(s):

res = ""
COI‘np = {IIAH:IITII, IIG":IICII, IIC’I:I’GII’ IITII:HAII}
for e in s:

res = comple] + res
return res

3.3 Translation Of An Open Reading Frame

Write a function translate(s: str) -> str that returns the amino acid sequence corresponding
to the RNA sequence s.

The following dictionary gives the mapping between codon and amino acid:

gencode =
"guu":
"guc":
"UUA":
"UuG" :
"Cuu":
"Cuc":
"CUA":
"CUG":
"AUU":
"AUC":
"AUA":
"AUG":
"GUU":
"GUC":
"GUA":
"GUG" :

{

"Phe",
"Phe",
"Leu",
"Leu",
"Leu",
"Leu",
"Leu",
"Leu",
"Ile",
"Tle",
"Tle",
"Met",
"Val",
"Val",
"Val",
"Val",

"ycy" :
"ycc :
"UCA":
"UCG" :
"CCu":
"Cee:
"CCA":
"CCG":
"ACU":
"ACC":
"ACA":
"ACG":
"GCU" :
"GCC":
"GCA":
"GCG" :

"Ser",
"Ser",
"Ser",
"Ser",
"Pro",
"Pro",
"Pro",
"Pro",
"Thr",
"Thr",
"Thr",
"Thr",
"Ala",
"Ala",
"Ala",
"Ala",

"UAU" :
"UAC":

IIUAAII

IICAGII

”TyI‘ s

:"STOP",
"UAG":
"CAU":
"CAC":
"CAA":

"STOP",
"His",
"His",
"Gln",

:"Gln",
"AAU":
"AAC":
"AAA":
"AAG":
"GAU":
"GAC":
"GAA":
"GAG":

"Asn",
"Asn",
n Lys n s
"Lys",
"Asp",
"Asp",
"Glu",
"Glu",

"UGU" :
"UGC" :
IIUGAII

"UGG" :

"CGU":
"CGC":
"CGA":
"CGG":
"AGU":
"AGC":
"AGA":
"AGG":
"GGU" :
"GGC":
"GGA":
"GGG" :

||Cys ,
:"STOP",
"Trp" ,
"Arg" ,
"Arg" ,

IIGlyll s
IIGlyll s
IIGlyll s

Note: The file gencode.py on your intranet contains this dictionary.

Example

>>> translate ("UUCUCACGU")
"PheSerArg"
>>> translate ("UUCUCACGUUGAAGC")
"PheSerArg"

Correction:
A first version with a while loop:

def translate(arn):
resg = "
you = 0

6 /9

l§ott£cli Lab 4: Sequences

PARIS

while you < len(arn) - 2:
AA = gencode[arn[you:you+3]]
if AA == "STOP":
return res
res = res + AA
you = you + 3
return res

for

def translate(arn):

res = ""

for i in range(0O, len(arn), 3):
AA = gencode[arn[i:i+3]]
if AA == "STOP":

return res

res = res + AA

return res

range
range

The Hamming distance is the simplest method you can use to compare two sequences s; and ss.
It works as follows: we compare s; and sy character by character if they are different we add +1
to the distance and 0 if they are identical. Mathematically, it gives the following formula:

N
hamming(sy, s2) = Z Lo 5),5004)
i=0

where:

e N is the length of the sequences;

o 1 if s 75 no
o 1, pn, = { 0 otherwise @ function that evaluates to 1 if n; and ng are different and 0

otherwise.

Write a function hamming(sl: str, s2: str) -> int that returns the Hamming distance
between the two DNA sequences s1 and s2. We consider that s1 and s2 have the same size.

Example

hamming ("ATT", "TTA")

hamming ("AAA", "GGG")

7/9

IoSioLtgc!i Lab 4: Sequences

PARIS

Correction:
First version with a while loop:

def hamming(sl, s2):

res = 0

i=0

while i < len(sl):
if s1[i] != s2[i]:

res = res + 1

i=1i+1

return res

The second version with a for loop:

def hamming(sl, s2):
res = 0
for i in range(len(sl)):
if s1[i] !'= s2[i]:
res = res + 1
return res

In this version, as we have to access the values from the two sequences at the same time we
cannot use a loop of the form for ¢ in s1. Instead we use the range function to get access to
the indices in the for loop.

The weighted distance is very similar to the Hamming distance except that we will now add
different values to the distance depending of the type of mismatch. The new mathematical formula
is the following;:

N
dweighted(sh 52) = Zw81[i],82[i] * Ilsl[i]»SQ[j]
i=0
Where:
e N is the size of the sequences;

o 1, i [y is the same function as for the Hamming distance;

® W, [i],s,[j] 15 the weight (or coefficient) associated to the mismatch between characters s [i]
and s3[i]. We will represent it in Python using a dictionary.

This dictionary is used in the following way:

w = {"A":{"A":0,"T":0.5,"G":-0.5,"C":0.3},
"T":{"A":0.5,"T":0,"G":1.2,"C": -5},
"G":{"A":-10,"T":1.2,"G":0,"C":0.3},
"C":{"A":0.3,"T":-5,"G":5.3,"C":0}}

w["A"] ["T"]

0.5
wl"Cc"1["A"]
0.3

Write a function weighted_dist(sl: str, s2: str, w: dict) -> float that returns the
weighted distance between the two DNA sequences s1 and s2 using the weights in w.

8 /9

IoSioltJec!i Lab 4: Sequences

PARIS

Example

>>> yw = {"A":{"A":0,"T":0.5,"G":-0.5,"C":0.3}, \

"T":{"A":0.5,"T":0,"G":1.2,"C":-5}, \
"G":{"A":-10,"T":1.2,"G":0,"C":0.3}, \
"C":{"A":0.3,"T":-5,"G":5.3,"C":0}}
>>> weighted_dist ("ATT", "TTA", w)
1.0
>>> weighted_dist("AAAG", "GGGA", w)
-11.5

Correction:
The first version with a while loop:

def weighted_dist(sl, s2, w):
res = 0
i=0
while i < len(sl):
res = res + wl[s1[i]] [s2[il]
i=1i+1
return res

The second version with a for loop:

def weighted_dist(sl, s2, w):
res = 0
for i in range(len(sl)):
res = res + w[s1[i]] [s2[i]]
return res

9 /9

	Introduction
	DNA Sequence Characteristics
	Adenine Frequency
	Example

	Nucleotide Frequency
	Example

	Modification Of Sequences
	Complementary Strand
	Example

	Reverse Complementary Sequence
	Example

	Translation Of An Open Reading Frame
	Example

	Distance Between DNA Sequences
	Hamming Distance
	Example

	Weighted Distance
	Example

