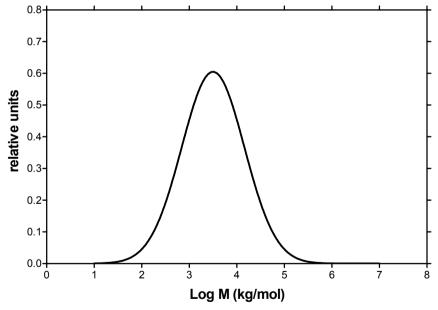
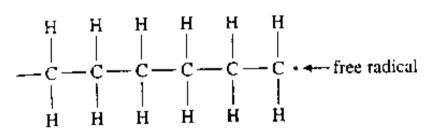
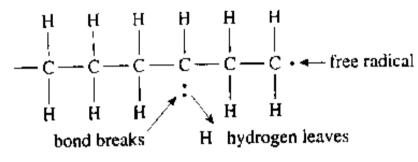

Molecular structure & Rheology


- M_c critical entanglement molecular weight
 - dramatic rheology change
 - due to chain entanglement

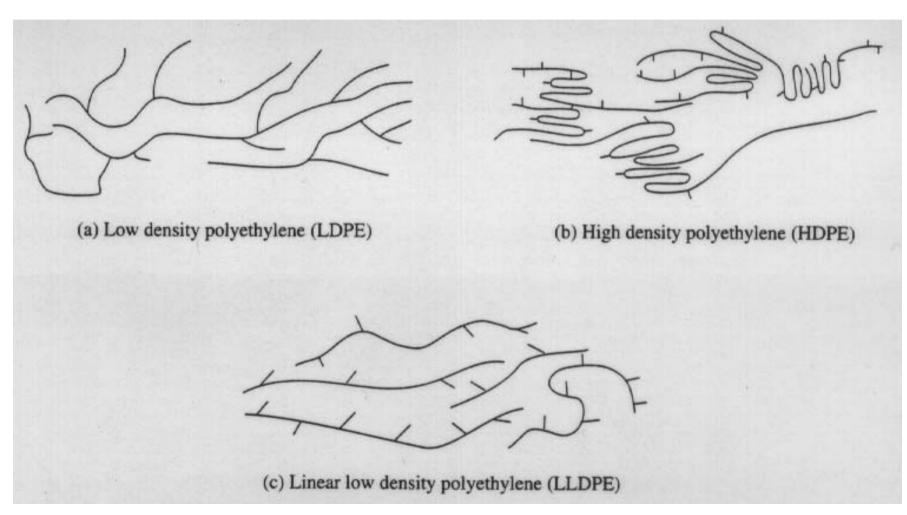
Polymer Architecture


- Molecular Mass Distribution (MMD)
 - Degree of Polymerisation
 - Number of monomers in a polymer
 - Monodisperse MMD
 - Polymers have same molecular mass
 - Polydisperse MMD
 - Polymers have different molecular mass
 - Homogenous MMD
 - Same polymer architecture independent of molecular mass
 - Heterogenous MMD
 - Mixture of different polymer architectures



Synthesis:

Chain-growth - free radical polymerisation

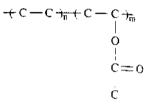

(a) Growing polymer chain

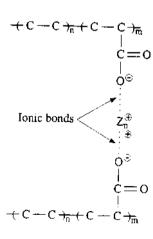
(b) Rupture of carbon-hydrogen bond

Polymer Architectures

	High-Pressure		Low-Pressure		
Process	Autoclave	Tubular	Solution	Gas phase	Slurry
				-	1 - 20
P (bar)	1000 - 3000	1000 - 3000	20 - 100	20 - 100	
T(°C)	> 200	>200	100 -200	50-100	50-100
Catalyst	air	air	Ziegler-Natta	Ziegler-Natta	Ziegler-Natta
	peroxides	peroxides	metallocene	metallocene	metallocene
Reaction	radical	radical	coordination	coordination	coordination
Polymer	random tree	random tree	linear, comb	linear, comb	linear,comb
	SCB+LCB	SCB + LCB	homopolymer	homopolymer	homopolymer
			copolymers	copolymers	copolymers
			SCB + LCB	SCB + LCB	SCB + LCB
Mw/Mn	10 -30	10-30	2-10	2-10	5 - 30
Density	915 - 935	915 - 935	865 - 965	890 - 965	935 - 965
(kg/m^3)					
Name	LDPE	LDPE	ULDPE	VLDPE	MDPE
			VLDPE	LLDPE	HDPE
			LLDPE	HDPE	UHMPE
			HDPE		

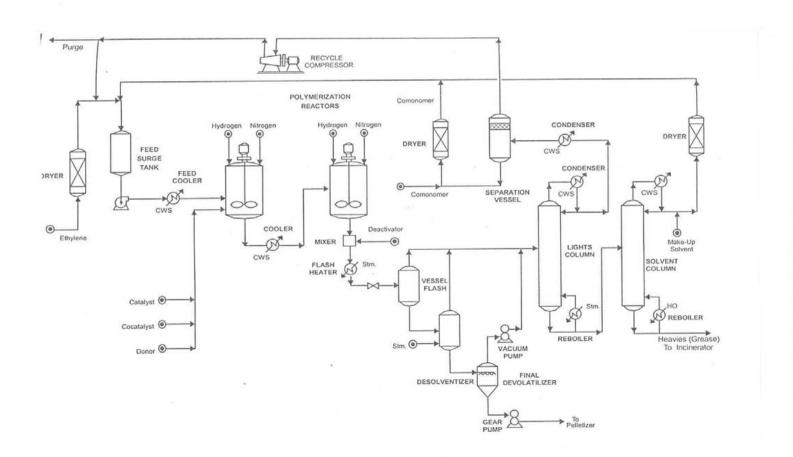
Manufacturing Technologies


Crystallinity & Short Chain Branching effects on Properties

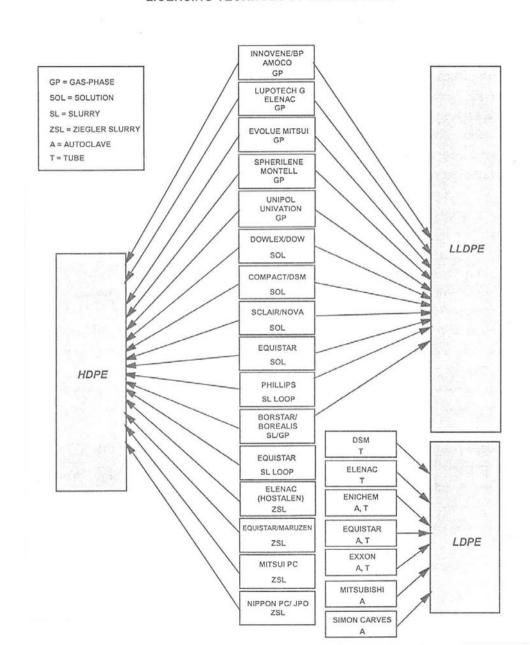

Property	How Increased Branching Affects the property		
Density/crystallinity	Decreases		
Melting point	Decreases		
Creep resistance	Decreases		
Tensile strength	Decreases		
Stiffness	Decreases		
Hardness	Decreases		
Impact toughness	Increases		
Transparency	Increases		
Oxidative resistance	Decreases		
UV stability	Decreases		
Solvent resistance	Decreases		
Permeability	Increases		
Shrinkage	Decreases		

Polyethylene Co-polymers

- Ethylene Vinyl Acetate (EVA)
 - High pressure process
 - 5-50% wt VA
 - High Clarity film
 - Hot melts
- Ethylene Acrylic Acid (EAA)
 - High pressure process
 - 3-20% AA
 - lonomers





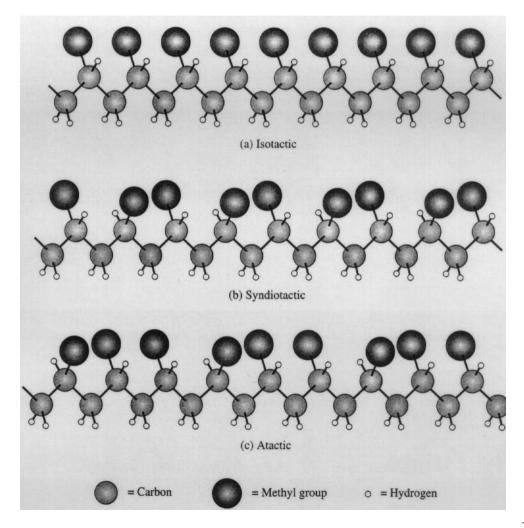

Polyethylene Manufacturing

LICENSING TECHNOLOGY COMPETITION

The first polyethylene was produced more or less by chance in March 1933 under very high pressure (1400 bar) in an experimental plant run by the British company *ICI*. It took a further two years before the developers succeeded in polymerising ethylene in a controlled process using modified apparatus. Polyethylene melts at 115°C to 120°C and has a relatively low density (PE-LD) of 0.918. Even in 1939 a plant with an annual output of several hundred tons was insufficient to meet the rapidly rising demand. In 1953 Karl Ziegler developed a new production method by which polyethylene could be polymerised at atmospheric pressure using suitable catalysts in a suspension. This not only eliminated the technical problems associated with extremely high pressures, it also produced material of substantially higher density (*PE-HD*) with a more crystalline structure and a higher melting point, i.e. a very much stronger material. Polyethylene is an excellent electrical insulator. It can be used for a multitude of different purposes ranging from household appliances, **packaging** and **industrial equipment** to **toys**.

Dow

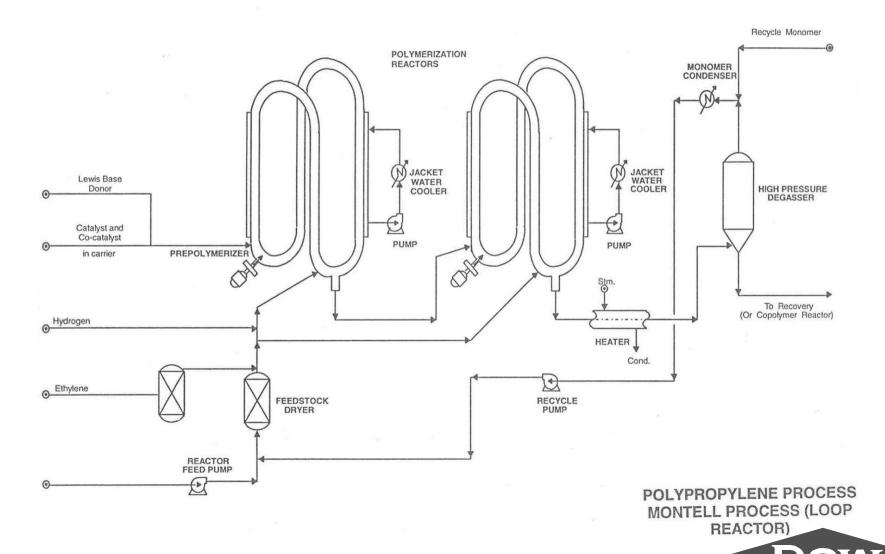
Polypropylene

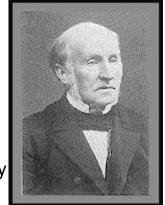


Polypropylene is the youngest of the bulk plastics. It has evolved at breathtaking speed and established itself in a very wide range of fields. This plastic was developed in 1954 by Giulio Natta in cooperation with researchers at the firm of Montecatini, where the material was also first produced on an industrial scale. Polypropylene is very similar to high-density polyethylene, but has a *lower density* and is more *rigid and harder*. It is the hardest of all polyolefin polymers and retains this quality even at temperatures above 100°C. It is exceptionally resistant to friction, and its heat resistance is outstanding. It possesses excellent dielectrical properties, is a *good insulator* and has especially *high long-term flexural strength* (10 million bending stress reversals). There are many different types of polypropylene on the market. They can be used in a wide variety of applications, including medical appliances and household goods, toys, automotive components and sports equipment, food packaging, agricultural equipment, signs, furniture, and components for the chemicals industry.

Dow

Polypropylene


Stereo-Isomers

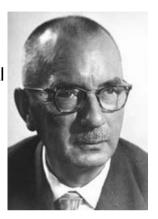

Polypropylene Manufacturing

History of Plastics

- Naturally occurring substances (Rubber, Cellulose)
 - 17-18th Century
 - Hevea (Ecuador) Gutta-Percha (Indonesia/Malaya) Rubber
 - 1823: C. Macintosh (Mackintosh)
 - Waterproof sheet of layers of fabric and rubber
 - 1838: C. Goodyear
 - Sulfur vulcanization of rubber
 - 1862: A. Parkes
 - "Parkesine" nitrated cellulose for replacing Ivory
 - 1869: J.W. Hyatt
 - Celluloid

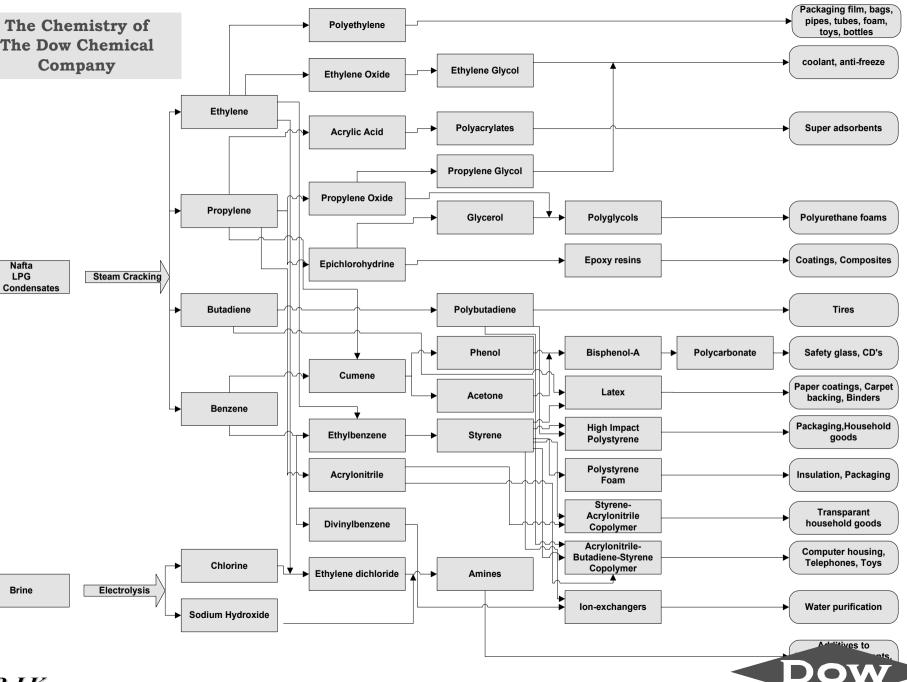
History of Plastics

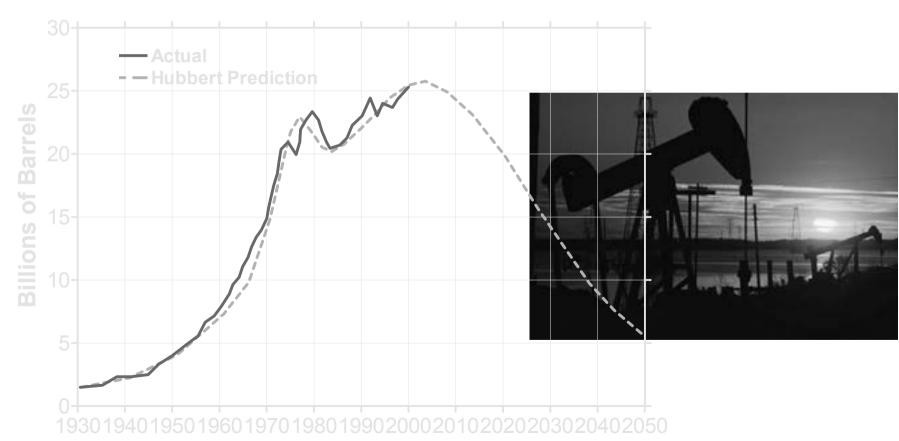
- Thermoplastics
 - 1909: H. Stobbe & G. Posnyak
 - Polystyrene
 - Commercial development in 1925 by IG Farben and commercialised in US by The Dow Chemical Company in 1938
 - 1913: F. Klatte
 - Polyvinylchloride revisited in 1927
 - 1927 1938: O. Röhm
 - Plexiglass Polymethylmetacrylate
 - 1934: E. Fawcett & R. Gibson
 - High pressure research gave Polyethylene
 - Commercial in 1939 as cable insulation material
 - 1937: W. Carothers
 - Step-growth polymerisation
 - Polyamide Nylon
 - 1941: J. Whinfield & J. Dickson
 - Polyethylene Terephtalate Terylene fibres

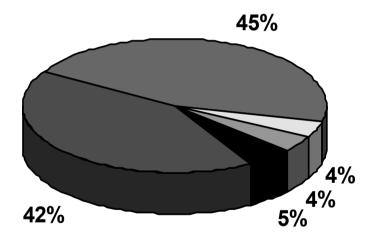


History of Plastics

- 1940's: K. Ziegler
 - Coordination chemistry Zr, Ti + alkyl-Al
 - Low pressure Polyethylene
- 1954: G. Natta
 - Polypropylene

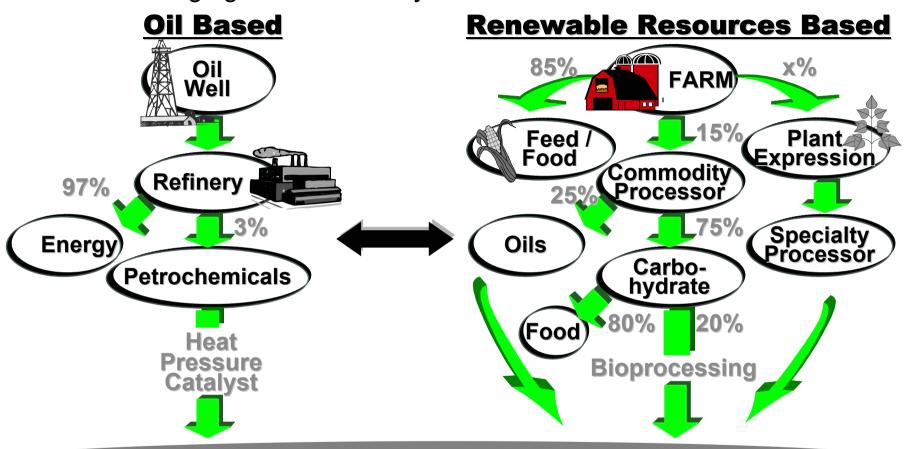

- Polycarbonate
- General Electric Co. commercial in 1959 -Lexan
- 1955-1970: Composite materials
- 1960-1980: Manufacturing technology
- 1980-2000: Specialty plastics & new catalysts




Challenges of Today

Annual Global Petroleum Production

Challenges of Today


Relative use of Petroleum

- Heat, Electricity, Energy
- Transport
- □ Chemical/Petrochemical Feedstock
- **Plastics**
- Other

Emerging Future: Duality in Feedstocks and Processes

Broad variety of commodity and differentiated chemicals and plastics

KEY COMPETENCIES

- Catalysis
- Chem Engineering
- Material Science

KEY COMPETENCIES

- Biotech Basics
- Bioprocessing
- Chem Engineering
- Material Science

NatureWorks _{TM}

Process

Polylactide

Chemical Processing

Lactic Acid

Fermentation

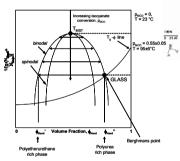
Films

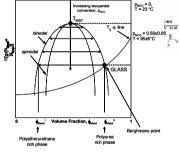
Foam

Future Challenges

Processing End-User Application

Helicopter pilot helmet predicted shear angles for carbon/epoxy prepreg




Wind Mill Blades, PCB Laminates, Refrigerator Insulation, Industrial Building Using Steel-Faced Sandwich Panels

Continuum Models

transition in flexible polyurethane foam formation

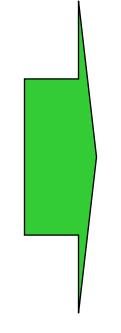
Microstructural phase

Quantum Modeling

Molecular Dynamics

Monte Carlo

Cluster linkage in poly(urethane-urea) networks


Diepoxides undergoing reaction with hardener

Stake holder Value

The Business Goal ?

Stake Holder Value Creation

Conclusions

- From product push to product pull
 - Sustainability
 - Stakeholder value creation
- R&D is essential to growth
 - Controlled performance
 - Integration Multi-disciplinary
- Global reach & local integration
- People

