

Hoja 14: Grupos (raíces de la unidad)

1. Demuestra que el conjunto de números complejos

$$\mathbb{S}_1 = \{ z \in \mathbb{C} / |z| = 1 \}$$

es un subgrupo de \mathbb{C}^* (geométricamente es la circunferencia de centro 0 y radio 1). Encuentra un isomorfismo entre \mathbb{S}_1 y \mathbb{R}/\mathbb{Z} .

2. Dado $n \in \mathbb{N}$ consideramos

$$R_n = \{ z \in \mathbb{C} / z^n = 1 \}$$

cuyos elementos reciben el nombre de **raíces** n-ésimas de la unidad. Demuestra que R_n es un subgrupo cíclico de \mathbb{S}_1 y que tiene orden n. Construye un isomorfismo entre R_n y \mathbb{Z}_n .

- 3. Halla explícitamente todos los elementos de R_8 , tanto en forma polar como cartesiana. Determina cuáles de ellas son generadores de R_8 (estos elementos reciben el nombre de **raíces primitivas**).
- 4. Consideramos el conjunto R formado por todas las **raíces de la unidad**, es decir, $R = \bigcup_{n=1}^{\infty} R_n$. Demuestra que R es un subgrupo de \mathbb{S}_1 isomorfo a \mathbb{Q}/\mathbb{Z} . Verifica que R es un grupo infinito pero que todos sus elementos tienen orden finito.
- 5. Encuentra un elemento de orden infinito en \mathbb{S}_1 .