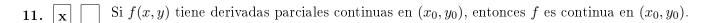
Si $\forall n \in \mathbb{Z}^+ a_n > 0$ y $\{a_n\}$ es decreciente, entonces $\sum_{n=1}^{\infty} (-1)^n a_n$ es convergente si y sólo si $\lim_{n \to +\infty} a_n = 0$.

La suma inferior de la función sen x en $[0, 2\pi]$ para la partición $P = \{0, \pi/2, \pi, 3\pi/2, 2\pi\}$ vale 0.

 $\lim_{A \to 0} \int_{A}^{1} \frac{1}{x^{p}} dx \text{ existe si y solo si } p < 1.$

9.



Suponga que
$$f(x,y)$$
 es una función que admite derivadas parciales continuas hasta orden 2, y que la matriz hessiana de f en un punto crítico es diagonal. Si los elementos de la diagonal principal son no nulos y de distinto signo, entonces dicho punto crítico no es un extremo de la función f .

13.
$$\square$$
 Sea $f: \mathbb{R}^m \to \mathbb{R}^n$ diferenciable. Entonces, si $x_0 \in \mathbb{R}^m$ es tal que $Df(x_0) \neq 0$, entonces x_0 no puede ser un punto crítico de f .

14.
$$\square$$
 Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Si $\lim_{x \to 0} f(x,0) = l$, entonces $\lim_{(x,y) \to (0,0)} f(x,y) = l$.

15.
$$\boxed{\mathbf{x}}$$
 El punto $(\frac{4}{3}, \frac{4}{3})$ es un máximo relativo de la función $f(x, y) = -x^3 + 4xy - 2y^2 + 1$.

16.
$$\square$$
 El volumen V de la esfera $x^2 + y^2 + z^2 = 1$ viene dado por $V = 4 \int_{-1}^{1} \int_{-1}^{1} \sqrt{1 - x^2 - y^2} \ dx dy$.

17.
$$\square$$
 \mathbf{x} $\overset{\text{Si}}{\mathbb{R}^2} f(x,y)$ es diferenciable en \mathbb{R}^2 y $\nabla f(0,0) = (0,1)$, entonces el origen puede ser un extremo de f en

18.
$$x$$
 El polinomio de Taylor centrado en 0 de la función $f(x) = (x-2)^2 - 4$ es $x^2 - 4x$.

Sea la función $f: \mathbb{R}^2 \to \mathbb{R}$. Entonces, f es diferenciable en (x_0, y_0) si y sólo si existe el siguiente límite:

20.
$$\lim_{(x,y)\to(x_0,y_0)} \frac{\left| f(x,y) - f(x_0,y_0) - \left(\frac{\partial f}{\partial x}(x_0,y_0) \frac{\partial f}{\partial y}(x_0,y_0) \right) \left(\frac{(x-x_0)}{(y-y_0)} \right) \right|}{||(x-x_0,y-y_0)||}.$$

.

${ m Matem\'aticas~II~(GIB)}$ - $2/7/2015$	Problema 1 (40 puntos)
Apellidos	Nombre
DNI $Grupo$ $Grupo$	Tiempo 50 minutos

Por favor, comience sus respuestas en esta hoja. Respuestas sin justificar recibirán poca o ninguna puntuación.

- A. (10 puntos) Sean $\{a_n\}$, $\{b_n\}$ sucesiones reales tales que $\lim_{n\to\infty} a_n = a$ y $\lim_{n\to\infty} b_n = b$. Demuestre mediante la definición que entonces $\lim_{n\to\infty} (a_n + b_n) = a + b$.
- B. (30 puntos) Se define $f(x) := \int_1^x \frac{1}{t} dt$,
 - a) (10 puntos) Encuentre razonadamente el dominio de f y argumente por qué es diferenciable en su dominio. Demuestre que es una función invertible en su imagen.
 - b) (10 puntos) Halle el dominio de la función inversa.
 (Indicación1: muestre que f no es acotada ni superior ni inferiormente y razone con la continidad de f. Indicación 2: recuerde que la serie harmónica es divergente.)
 - c) (5 puntos) Halle la derivada de la función inversa.
 - d) (5 puntos) Calcule el polinomio de Taylor de orden n de f, centrado en x = 1 y escriba f como este polinomio más un resto en forma de Lagrange.

SOLUCION:

A. Puesto que $\lim_{n\to\infty} a_n = a$ y $\lim_{n\to\infty} b_n = b$, dado $\varepsilon > 0$ se tendrá que existen $N_a, N_b \in \mathbb{N}$ tales que, $n > N_a \Rightarrow |a_n - a| < \frac{\varepsilon}{2}$ y $n > N_b \Rightarrow |b_n - b| < \frac{\varepsilon}{2}$. Eligiendo $N := \max\{N_a, N_b\}$ ambas condiciones se cumplen simultáneamente y se tendrá que

$$n > N \Rightarrow |(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

В.

a) La función $\frac{1}{t}$ está definida, es continua y acotada en todo intervalo de la forma [1,x] con x>0, por lo tanto es integrable Riemann en dicho intervalo y consecuentemente la función f no sólo está definida sino que por el TFC, es diferenciable en un tal intervalo. Además, f es positiva para x>0 y negativa para 0< x<1. Para $x\le 0$ la función f no está definida, ya que la función integrando, no es acotada en el correspondiente intervalo y la integral de Riemann no tiene sentido. Por tanto, el dominio de f es \mathbb{R}^+ .

La condición necesaria y suficiente para que una función sea invertible en su imágen es que sea invertiva en su dominio. Pero esto se prueba fácilmente en nuestro caso. En efecto, sean $x, y \in \mathbb{R}^+$. Entonces:

$$f(x) = f(y) \Leftrightarrow \int_{1}^{x} \frac{1}{t} dt = \int_{1}^{y} \frac{1}{t} dt \Leftrightarrow \int_{1}^{x} \frac{1}{t} dt - \int_{1}^{y} \frac{1}{t} dt = 0 \Leftrightarrow \int_{y}^{x} \frac{1}{t} dt = 0.$$

Ahora bien, si suponemos $x \neq y$, al ser $\frac{1}{t}$ estrictamente positiva entre x e y, la integral ha de ser estrictamente positiva, lo que supone una contradicción. Así sólo puede ser x = y, por lo que f es inyectiva.

b) El dominio de la inversa es la imagen de la función f. Veámos que f no está acotada superiormente. En efecto, es fácil ver a partir de una sencilla gráfica que, dado $N \in \mathbb{N}, N > 1$, se tiene que

$$0 < \sum_{n=1}^{N-1} 1 \cdot \frac{1}{n+1} < \int_{1}^{N} \frac{1}{t} dt.$$

Por otro lado, es fácil ver que $\sum_{n=1}^{N-1} 1 \cdot \frac{1}{n+1} = \sum_{k=2}^{N} \frac{1}{k}$, que es una suma harmónica. Por tanto,

como la serie harmónica es divergente, dado M > 0 existe $N_M \in \mathbb{N}$ tal que $M < \sum_{k=2}^{N_M} \frac{1}{k}$, es decir,

$$\forall M > 0, \; \exists N_M \in \mathbb{N}, M < \int_1^{N_M} \frac{1}{t} dt,$$

es decir $M < f(N_M)$ por lo que f no está acotada superiormente.

Así, dado cualquier real $r \geq 0$, existe un $N_M \in \mathbb{N}$ tal que $r < f(N_M)$. Pero como f es continua en $[1, N_M]$, el teorema de los valores intermedios nos garantiza que $r \in [0, f(N_M)] \subset \text{Im}(f)$, y, por tanto, $[0, +\infty) \subset \text{Im}(f)$.

Análogamente podemos ver que f no es acotada inferiormente. En efecto, para 0 < x < 1 tendremos que $\int_1^x \frac{1}{t} dt = -\int_x^1 \frac{1}{t} dt$. De nuevo puede verse a partir de una gráfica que dado $N \in \mathbb{N}, N > 1$ se tiene que

$$\sum_{n=1}^{N} \frac{1}{\frac{1}{n}} \cdot \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{N} \frac{1}{n+1} = \sum_{k=2}^{N+1} \frac{1}{k} < \int_{\frac{1}{N}}^{1} \frac{1}{t} dt,$$

que de nuevo es una suma harmónica que puede hacerse tan grande como se desee. Por tanto, f puede hacerse tan pequeña como se desee y tampoco está acotada inferiormente.

Razonando análogamente al caso $r \geq 0$ podemos ver que todo r < 0 pertenece a la imagen de f, por lo que $\text{Im}(f) = \mathbb{R}$

c) Puesto que f es diferenciable, por el teorema de la función inversa sabemos que

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\frac{1}{f^{-1}(x)}} = f^{-1}(x),$$

donde hemos aplicado el TFC.

d) Obsérvese que la función f es C^{∞} en su dominio \mathbb{R}^+ . Así, es posible escribir el polinomio de Taylor de cualquier orden para f centrado en x=1. Obviamente f(1)=0. por otro lado, aplicando el TFC en el primer paso tenemos que:

$$f'(x) = \frac{1}{x}; f''(x) = -\frac{1}{x^2}; f'''(x) = (-1)^2 \frac{2}{x^3}; \dots$$

$$f^{(n)}(x) = (-1)^{(n-1)} \frac{(n-1)!}{x^n}.$$

Por tanto, el polinomio pedido es

$$P_{n,1}^f = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + (-1)^{(n-1)}\frac{1}{n}(x-1)^n, \ n \in \mathbb{Z}^+.$$

Así f, puede escribirse, en función de un resto de Lagrange, como

$$f(x) = P_{n,1}^f + (-1)^n (x) \frac{(x-1)^{(n+1)}}{(n+1)\xi^{(n+1)}}, \ 1 < \xi < x.$$

${ m Matem\'aticas~II~(GIB)}$ - $2/7/2015$	Problema 2 (40 puntos)
Apellidos	$\dots \dots Nombre$
DNI $Grupo$ $Grupo$	Tiempo 50 minutos

Por favor, comience sus respuestas en esta hoja. Respuestas sin justificar recibirán poca o ninguna puntuación.

A. (20 puntos) Sea la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$:

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. (5 puntos) Estudie la continuidad de f en todo su dominio.
- 2. (5 puntos) Calcule (en los puntos del dominio donde existan) $f_x(x,y) = \frac{\partial f}{\partial x}(x,y)$ y $f_y(x,y) = \frac{\partial f}{\partial y}(x,y)$.
- 3. (5 puntos) Calcule las derivadas direccionales $D_u f(0,0)$ para todo vector unitario $u = (\cos \theta, \sin \theta) \cos \theta \in [0, 2\pi)$.
- 4. (5 puntos) Estudie la diferenciabilidad de f en todo su dominio.
- B. (20 puntos) Encuentre el volumen del sólido acotado por las gráficas de las funciones $f(x,y) = \sqrt{x^2 + y^2}$ y $g(x,y) = x^2 + y^2$.

SOLUCION:

A.)

1. En $R = \mathbb{R}^2 \setminus \{(0,0)\}$ f es continua por ser cociente de funciones continuas (y no anularse el denominador). En cuanto al punto (0,0), como

$$0 \leq \left| \frac{xy^2}{x^2 + y^2} \right| = |x| \frac{y^2}{x^2 + y^2} \leq |x| \underset{(x,y) \to (0,0)}{\longrightarrow} 0,$$

el criterio del sándwich garantiza que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$$

y, por tanto, como (0,0) es punto de acumulación del dominio, f es continua en dicho putno y, en consecuencia, en \mathbb{R}^2 .

2. En R la función f es una función racional y el denominador no se anula, por lo que

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^2(x^2+y^2) - 2x^2y^2}{(x^2+y^2)^2} = \frac{y^4 - x^2y^2}{(x^2+y^2)^2}.$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{2xy(x^2+y^2) - 2xy^3}{(x^2+y^2)^2} = \frac{2x^3y}{(x^2+y^2)^2}.$$

Por otro lado, en (0,0) tenemos:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0.$$

Por tanto, f tiene derivadas parciales en todo su dominio.

3. Sea $\theta \in [0, 2\pi)$. La derivada direccional de f en (0, 0) según la dirección $u = (\cos \theta, \sin \theta)$ es:

$$D_{u}f(0,0) = D_{(\cos\theta,\sin\theta)}f(0,0) = \lim_{t \to 0} \frac{f(0+t\cos\theta,0+t\sin\theta) - f(0,0)}{t}$$
$$= \lim_{t \to 0} \frac{\frac{t^{3}\cos\theta\sin^{2}\theta}{t^{2}(\cos\theta+\sin^{2}\theta)} - 0}{t} = \cos\theta\sin^{2}\theta$$

4. Como f tiene en R derivadas parciales y éstas son continuas, f es diferenciable en R. Sin embargo, si f fuera diferenciable en (0,0), entonces se cumpliría que

$$D_u f(0,0) = \nabla f(0,0) \cdot u = 0$$

lo cual es falso si, por ejemplo, tomamos $u=(\cos\frac{\pi}{4},\sin\frac{\pi}{4})=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$, en cuyo caso, como hemos visto en el apartado anterior, se tiene

$$D_{(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})}(0, 0) = \frac{\sqrt{2}}{4}.$$

Por tanto, f no es diferenciable en (0,0).

B.) Las gráficas de f y g tienen en común los puntos que verifican

$$x^2 + y^2 - \sqrt{x^2 + y^2} = 0.$$

Si definimos $r = \sqrt{x^2 + y^2}$, la ecuación anterior queda $r^2 - r = 0$, cuyas soluciones son r = 0 y r = 1. Así, la intersección de ambas gráficas es:

$$\{(0,0,0)\} \cup \{(x,y,1) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$$

Por otro lado, si $r \in [0,1]$, entonces $r^2 \le r$, luego el volumen que nos piden se calcula de la siguiente manera:

$$V = \iint_{B_1(0,0)} f(x,y) - g(x,y) \, dx dy = \iint_{B_1(0,0)} \sqrt{x^2 + y^2} - (x^2 + y^2) \, dx dy.$$

Si hacemos un cambio de variable a coordenadas polares (recuérdese que, en dicho cambio, $g(r,\theta) = (x(r,\theta),y(r,\theta))$ con r > 0 y $\theta \in (0,2\pi)$, y $|Jg(r,\theta)| = r$), tenemos que

$$V = \int_0^{2\pi} \int_0^1 r(r - r^2) dr d\theta = 2\pi \left[\frac{1}{3} - \frac{1}{4} \right] = \frac{\pi}{6}.$$

