
Python and Bioinformatics

Pierre Parutto

October 10, 2016

Contents

1 Recursivity 2
1.1 Recursive Thinking . 2
1.2 Recursive Functions . 2
1.3 Recursivity On Integer Sequences 3

1.3.1 Example - Factorial Function 3
1.4 Recursivity On Sequences . 4

1.4.1 Example - Number Of Elements On Lists 4
1.4.1.1 Unrolling The Functions Calls 5

1.4.2 Example - Number Of Elements On Strings 5

1

Chapter 1

Recursivity

In computer-science recursivity provides another way for solving problems. Re-
cursively solving a problem consists in solving sub-problems and combining their
solutions to get the solution of the initial problem. Recursive thinking is not
fit for all types of problems but is very natural when thinking about integer
sequences (un given as a function of un−1), trees (process a node and apply the
same computation to its sons) and graphs (process a node and apply the same
computation to its successors).

1.1 Recursive Thinking

Definition 1 Recursively solving a problem consists in two steps:

1. Breaking down the problem in sub-problems (easier to solve);

2. Merging the solutions of the sub-problems to obtain the solution of
the initial problem.

This is a way of thinking on how to solve a problem, it is done outside of
the computer on a sheet of paper. You specify the problem and think of how to
break it down into sub-problems and to merge their solutions.

1.2 Recursive Functions

Definition 2 A recursive function is a function that calls itself.

A recursive function allows to implement the recursive thinking in a com-
puter program. A recursive function must distinguish between 2 types of input
values:

2

Definition 3 Recursive function cases:

1. The base case: the input argument corresponds to a minimal sub-
problem that can be solved without calling the function.

2. The recursive case: the input argument is not minimal, the problem
is broken down into one or multiple sub-problem(s). The function is
called on each sub-problem and their solutions merged together.

In the base case, the function must simply return the value associated to a
trivial sub-problem, for example the empty list or the value 0. On the other
hand, the recursive case is more involved as it requires to think how to break
down the problem and how to merge the solutions of the sub-problems.

We call these two steps the recursive formulation of a problem.

Warning

Note that when you have the recursive formulation of a problem it is, in
most cases, straightforward to transform it into Python code.

Remark

We also call the breakdown phase the descending and the merging phase
the ascending phase.

1.3 Recursivity On Integer Sequences

For an integer sequences u given in a recursive form:

un =

{
f(un−1) n = 0
u0 otherwise

where f is some function and n ≥ 0 is an integer.

The Python formulation of this kind of problem is straightforward.

1.3.1 Example - Factorial Function

The factorial function n! (for n > 0 an integer) is defined as:

n! =

{
1 n = 0
n× (n− 1)! otherwise

We are now going to implement the recursive function facto(n: int) -> int

that returns the value n!:

def facto(n):

if n == 0:

3

return 1

return n * facto(n-1)

Remark

Note that it is not necessary in the previous code to put an else case
because the return statement already quits the function. Hence in the
case where n is 0, the function quits with the return value 1.

1.4 Recursivity On Sequences

A sequence can be seen recursively as a first element and the remaining se-
quence. The base case is when the sequence is empty.

In Python for a sequence s, the first element is accessed using the syntax
s[0] and the remaining elements can be accessed by s[1:].

The empty sequence is "" for strings and [] for lists.

1.4.1 Example - Number Of Elements On Lists

Let us write a recursive function my_len(l: list) -> int that returns the
number of elements in the list l.

To solve this question we have to think about the two cases:

• The base case is when the list is empty, then its length is 0.

• In the recursive case, we can decompose the list in its first element l[0]

and the remaining elements l[1:]. In this case the size is 1 plus the size
of the list l[1:].

This reasoning is translated in Python as:

def my_len(l):

if l == []:

return 0

return 1 + my_len(l[1:])

Remark

Note that we do not care about the value of l[0].

4

my_len([1,2,3,4])=

1 + my_len([1,2,3])=

1 + my_len([1,2])=

1 + my_len([1])=

1 + my_len([])=

0

1

2

3

4

Ascent

D
escent2

1
Figure 1.1: The recursive calls (red) and computed values (blue) for computing
the length of a four elements list.

1.4.1.1 Unrolling The Functions Calls

Behind the scene, recursivity makes use of the function stack implemented in
Python that stores the successive function calls.

In order to debug your code, it is thus important to understand what happens
in Python when you make the call my_len([1,2,3,4]). Figure 1.1 presents the
different functions calls and the returned values.

To compute the value my_len([1,2,3,4]) Python needs to compute the
value my_len([1,2,3]). Once again to compute my_len([1,2,3]) Python
needs to compute my_len([1,2]). These calls goes on until the call my_len([])
for which the value is directly computed and is 0. From there, the values of the
previous calls are computed until reaching the original call.

1.4.2 Example - Number Of Elements On Strings

The reasoning for strings is the same as the one for lists, except that the empty
string has the value "":

def my_len(s):

if s == "":

return 0

return 1 + my_len(l[1:])

5

	Recursivity
	Recursive Thinking
	Recursive Functions
	Recursivity On Integer Sequences
	Example - Factorial Function

	Recursivity On Sequences
	Example - Number Of Elements On Lists
	Unrolling The Functions Calls

	Example - Number Of Elements On Strings

