3.60 How are crystallographic planes indicated in HCP unit cells?
In HCP unit cells, crystallographic planes are indicated using four indices which
correspond to four axes: three basal axes of the unit cell, aj, a,, and a3 , which are
separated by 120°; and the vertical ¢ axis.

3.61 What notation is used to describe HCP crystal planes?
HCP crystal planes are described using the Miller-Bravais indices, (hkil).

3.62  Draw the hexagonal crystal planes whose Miller-Bravais indices are:
(@ 1011) (d) (1212) (g) (1212) () (1100)
(b) (0111) (e) 2111) (h) (2200) (k) (2111)
(¢) (1210) () (1101) () (1012) (1) (1012)

The reciprocals of the indices provided give the intercepts for the plane (a1, az, a3, and ¢).

AN

'/
/

7

&
&

a

&

"

(0111)

a (1011) 4
—as ! —as
a. a; =1, ay =0, b. ay=x, a, =1,
a;=-1c=1 a;=-1,c=1
{
ay @
o 1212) N\ a” (10D
! ! —1, a, =1
d. 0121, aZZ_E, €. a1:§7a2=15 f' al_’az__’
1 a;=-1,c=1 a3 =0, c=1
a3—1,c=5
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0, ¢ =00
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—a3

i. gy =1, a, =00,
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ar ay
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a3 = w, C =00 1
az;=1,c¢
2
3.63  Determine the Miller-Bravais indices of the hexagonal crystal planes in Fig. P3.63.
Miller-Bravais Indices for Planes Shown in Figure P3.63(a)
Plane a Plane b Plane ¢
Planar Reciprocals Planar Reciprocals Planar Reciprocals
Intercepts of Intercepts Intercepts of Intercepts Intercepts of Intercepts
1 1 1
ay=oo —=0 ar=1 —=1 a;=-% —=-2

4 4 4
1 1 1

a,=-1 —=-1 ay = —=0 a="% —=2
a, a, a,
1 1 1

a3=1 —=1 613:—1 —=-1 az = o0 —=0
a3 a3 a3

Smith
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Planar Reciprocals Planar Reciprocals Planar Reciprocals
Intercepts of Intercepts Intercepts of Intercepts Intercepts of Intercepts
1 1
c=o® -=0 c=% 2 c= —=0
c c
The Miller indices of plane a | The Miller indices of plane » | The Miller indices of plane ¢
are(0110). are(101 2). are(2200).

Miller-Bravais Indices for the Planes Shown in Figure P3.63(b)

Plane a
Planar Reciprocals
Intercepts of Intercepts
1
aj = oo —=0
4
1
a = 1 —=1
a,
1
az = -1 —=-1
as
1
c=® —=0
c

The Miller indices of plane a
are(0110).

Plane b
Planar Reciprocals
Intercepts of Intercepts
1
a; = 1 —=1
4
1
a,=-1 —=-1
a,
1
a3 = © —=0
a3
1
c=1 —=1
c

The Miller indices of plane b
are(1101).

Plane ¢
Planar Reciprocals
Intercepts of Intercepts
1
a;=1 —=1
4
1
a, = -1 —=-1
a,
1
az = ™ —=0
as
1
c=1 —=1
c
The Miller indices of plane ¢
are(1101).

3.64 Determine the Miller-Bravais direction indices of the —a;, -a; and —a3 directions.

The Miller-Bravais direction indices corresponding to the —aj, -a; and —a3 directions are
respectively, [1000], [0100], and[0010].

3.65

Determine the Miller-Bravais

direction indices of the vectors
originating at the center of the
lower basal plane and ending at
the end points of the upper basal
plane as indicated in Fig. 3.18(d).

[1121],[2111],[1211],
[1121],[2111],[1211]

Smith

[1121]

[1511]/
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3.66

3.67

3.68

3.69

3.70

Determine the Miller-Bravais [§ 304]

direction indices of the basal [3034] [0334]

plane of the vectors originating at \

the center of the lower basal plane B —

and exiting at the midpoints [0334] —] \k _

between the principal planar axes. _ // [3034]
[3304]

[3034],[3304],[033 4], N o

[3034],[3304],[0334] —a s

Determine the Miller-Bravais direction indices of the directions indicated in Fig. P3.67.

a

(b)

For Fig. P3.67(a), the Miller-Bravais direction indices indicated are
[2111]and [11 2 1]. Those associated with Fig. P3.67(b)are [1101] and [10 11].

What is the difference in the stacking arrangement of close-packed planes in (a) the HCP
crystal structure and (b) the FCC crystal structure?

Although the FCC and HCP are both close-packed lattices with APF = 0.74, the
structures differ in the three dimensional stacking of their planes:

(a) the stacking order of HCP planes is ABAB... ;
(b) the FCC planes have an ABCABC... stacking sequence.

What are the densest-packed planes in (a) the FCC structure and (b) the HCP structure?

(a) The most densely packed planes of the FCC lattice are the {1 1 1} planes.
(b) The most densely packed planes of the HCP structure are the {0 0 0 1} planes.

What are the closest-packed directions in (a) the FCC structure and (b) the HCP
structure?

(a) The closest-packed directions in the FCC lattice are the <1 1 0> directions.

(b) The closest-packed directions in the HCP lattice are the <1 12 0> directions.
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3.71

3.72

3.73

The lattice constant for BCC tantalum at 20°C is 0.33026 nm and its density is 16.6
g/cm’. Calculate a value for its atomic mass.

The atomic mass can be assessed based upon the mass of tantalum in a unit BCC cell:
mass/unit cell = p, (volume/unit cell) = ,oua3

=(16.6 g/em®)(10°cm?/m*)(0.33026x10™° m)?

=5.98x107* glu.c.
Since there are two atoms in a BCC unit cell, the atomic mass is:

(5.98x107% g/unit cell)(6.023x10* atoms/mol)
2 atoms/unit cell

Atomic mass =

=180.09 g/mol

Calculate a value for the density of FCC platinum in grams per cubic centimeter from its
lattice constant a of 0.39239 nm and its atomic mass of 195.09 g/mol.

First calculate the mass per unit cell based on the atomic mass and the number of atoms
per unit cell of the FCC structure,

(4 atoms/unit cell)(195.09 g/mol)
6.023x10% atoms/mol

mass/unit cell = =1.296x107*' g/unit cell

The density is then found as,

p, = mass/unit cell ~ mass/unit cell 1.296x107%" g/unit cell
Y volume/unit cell a’ [(0.39239x107° m)*]/unit cell

3
=21,445,113 g/m®| — 2 | =21.45g/em®
100 cm
Calculate the planar atomic density in atoms per square millimeter for the following
crystal planes in BCC chromium, which has a lattice constant of 0.28846 nm: (a) (100),

(b) (110), (c) (111).
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To calculate the density, the planar area and the number of atoms contained in that area
must first be determined.

(a) The area intersected by the (1 0 0) plane inside the cubic unit cell is «* while the
number of atoms contained is: ( 4 corners)x (%4 atom per corner) = 1 atom. The density is,

__equiv. no. of atoms whose centers are intersected by selected area

Py selected area

B 1 atom
(0.28846x107 m)?

2
=(1.202x10" atoms/mz)KL
1000 mm

=1.202x10" atoms/mm?
(b) For the more densely packed (1 1 0) plane, there are:
1 atom at center + ( 4 corners) x (¥ atom per corner) = 2 atoms
And the area is given as (x/ia)(a) =+2a*. The density is thus,

2 atoms

19 2 _6 5 )
= \/5(0 28846107 m)2 =(1.699x10"" atoms/m~)(10™ m*“/mm~)

Pp

=1.699x10" atoms/mm?

(c) The triangular (1 1 1) plane contains: (3 corners) x (‘/¢ atom per corner) = Y% atom.

The area is equal to= %bh = %(x/ia) [? aJ = %az. The density is thus,

1/2 atom =(9.813x10" atoms/m?)(10™° m?/mm?)

Py =
*f(o.28846><10—9 m)?

=9.813x10'? atoms/mm*>

3.74  Calculate the planar atomic density in atoms per square millimeter for the following
crystal planes in FCC gold, which has a lattice constant of 0.40788 nm: (a) (100), (b)

(110), (c) (111).
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(a) The area intersected by the (1 0 0) plane and the FCC unit cell is a” while the number
of atoms contained is:

1 atom at center + ( 4 corners) x (4 atom per corner) = 2 atoms

The density is therefore,

__equiv. no. of atoms whose centers are intersected by selected area

r selected area

B 2 atoms
(0.40788x107 m)?

2
= (1.202x10" atoms/m?) _m
1000 mm

=1.20x10" atoms/mm’
(b) For the more densely packed (1 1 0) plane, there are:
(2 face atoms) x (2 atom) + ( 4 corners) x (%4 atom per corner) = 2 atoms
And the area is given as (x/Ea)(a) =+2a>. The density is thus,

2 atoms

= =(8.501x10"®atoms/m?)(10® m?/mm?
Pr = 12040788 %10 m)’ ( X )

=8.50x10"* atoms/mm*
(c) The triangular (1 1 1) plane contains:

(3 face atoms x % atom) + (3 corners) x (‘/¢ atom per corner) = 2 atoms

The area is equal to: = %bh = %(ﬁa)(? aJ = @az. The density is therefore,

Py = 2 atoms = (1.963x10" atoms/m?)(10™® m*/mm?)

*f(o.40788x10—9 m)?

=1.963x10" atoms/mm?>

3.75 Calculate the planar atomic density in atoms per
square millimeter for the (0001) plane in HCP
beryllium which has a constant @ = 0.22856 nm
and a ¢ constant of 0.35832 nm.

The area intersected by the (0 0 0 1) plane
and the HCP unit cell is simply the basal area,
shown in the sketch to the right:
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3

Selected Area = (6 triangles) x (equilateral triangle area) = 6(%a} (— aJ =

33,
—ada

2 2

While the number of atoms contained is:
1 atom at center + ( 6 corners) x (%5 atom per corner) = 3 atoms

The density is therefore,

__equiv. no. of atoms whose centers are intersected by selected area

P selected area

3 atoms

2
= (2.201x10" atoms/m?)| ———
1000 mm

3*25(0.22856><1o—9 m)

=2.21x10" atoms/mm?

3.76  Calculate the linear atomic density in atoms per millimeter for the following directions in
BCC vanadium, which has a lattice constant of 0.3039 nm:

(a) [100], (b) [110], (c) [111].

(a) (b) (©) L

[100] [110]

In general, the linear atomic density is derived from:

o = no. of atomic diam. intersected by selected length of direction line
=

selected length of line

(a) For the [100] direction of BCC vanadium,

o = no. atom dia. 1 atom
! a (0.3039 nm)(10™ m/nm)(10° mm/m)

=3.29%x10° mm

(b) For the [110] direction of BCC vanadium,
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o = no. atom dia. 1 atom
: 2a J2(0.3039 nm)(10° mm/nm)

=2.33x10° mm

(c) For the [111] direction of BCC vanadium,

o = no. atom dia. 2 atoms
: Ja J3(0.3039 nm)(10° mm/nm)

=3.80x10° mm

3.77  Calculate the linear atomic density in atoms per millimeter for the following directions in
FCC iridium, which has a lattice constant of 0.38389 nm:

(a) [100], (b) [110], (c) [111].

(a) (b) ©) L]

4
[100] [110]
In general, the linear atomic density is derived from:

o = no. of atomic diam. intersected by selected length of direction line
=

selected length of line
(a) For the [100] direction of FCC iridium,

_ no. atom dia. 1 atom

P = = — =2.60x10° mm
a (0.38389 nm)(10™ mm/nm)
(b) For the [110] direction of FCC iridium,
= no. atom dia. _ 2 atoms : _3.68x10° mm
V2a J2(0.38389 nm)(10° mm/nm)

(c) For the [111] direction of FCC iridium,

_ no. atom dia. 1 atom

0 = = =1.50x10° mm
: Ja J3(0.38389 nm)(10"° mm/nm)
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3.78

3.79

3.80

What is polymorphism with respect to metals?

A metal is considered polymorphic if it can exist in more than one crystalline form under
different conditions of temperature and pressure.

Titanium goes through a polymorphic change from BCC to HCP crystal structure upon
cooling through 882°C. Calculate the percentage change in volume when the crystal
structure changes from BCC to HCP. The lattice constant @ of the BCC unit cell at 882°C
is 0.332 nm and the HCP unit cell has a = 0.2950 nm and ¢ = 0.4683 nm.

To determine the volume change, the individual volumes per atom for the BCC and HCP
structures must be calculated:

a® nm’/unit cell ~(0.332 nm)®

: = =0.0183 nm’/atom
2 atoms/unit cell 2 atoms

Ve =

v (3a’c)(sin60°) nm*/unit cell _ (3)(0.2950 nm)*(0.4683 nm)(sin60°)
HCP — -

6 atoms/unit cell 6 atoms

=0.01765 nm’/atom

Thus the change in volume due to titanium’s allotropic transformation is,

% Volume change = M(l 00%)
BCC
_0.01765 nm>/atom —0.0183 nm?>/atom

0.0183 nm>/atom

(100%) = -3.55%

Pure iron goes through a polymorphic change from BCC to FCC upon heating through
912°C. Calculate the volume change associated with the change in crystal structure from
BCC to FCC if at 912°C the BCC unit cell has a lattice constant @ = 0.293 nm and the
FCC unit cell a = 0.363.

First determine the individual volumes per atom for the iron BCC and FCC crystal
structures:

a® nm’/unit cell ~(0.293 nm)®

Vace = , = =0.01258 nm">/atom
2 atoms/unit cell 2 atoms
3 3, - 3
Vo = a’ nm /um.t cell _ (0.363 nm) — 0.01196 nm’/atom
4 atoms/unit cell 4 atoms

Thus the change in volume due to iron’s allotropic transformation is,
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_ 3 _ 3
% Volume change = Vece =Vace (100%) = 0.01196 nm"/atom 0.3()1258 nm’/atom (100%)
Vece 0.01258 nm’/atom
=-4.94%
3.81 What are x-rays, and how are they produced?

X-rays are electromagnetic radiation having wavelengths in the range of approximately
0.05 nm to 0.25 nm. These waves are produced when accelerated electrons strike a target
metal.

3.82 Draw a schematic diagram of an x-ray tube used for x-ray diffraction, and indicate on it
the path of the electrons and x-rays.

See Figure 3.25 of textbook.

3.83 What is the characteristic x-ray radiation? What is its origin?

Characteristic radiation is an intense form of x-ray radiation which occurs at specific
wavelengths for a particular element. The K, radiation, the most intense characteristic
radiation emitted, is caused by excited electrons dropping from the second atomic shell
(n = 2) to the first shell (n =1). The next most intense radiation, Kg, is caused by excited
electrons dropping from the third atomic shell (n = 3) to the first shell (n=1).

3.84 Distinguish between destructive interference and constructive interference of reflected x-
ray beams through crystals.

Destructive interference occurs when the wave patterns of an x-ray beam, reflected from
a crystal, are out of phase. Conversely, when the wave patterns leaving a crystal plane

are in phase, constructive interference occurs and the beam is reinforced.

3.85 Derive Bragg’s law by using the simple case of incident x-ray beams being diffracted by
parallel planes in a crystal.

Referring to Fig. 3.28 (¢), for these rays to be in phase, ray 2 must travel an additional
distance of MP + PN. This extra length must be an integral number of wavelengths, A.

nA= MP + PN wheren=1,2,3...

Moreover, the MP and PN distances must equal d,,, sin@, where d,,, is the crystal
interplanar spacing required for constructive interference.

MP =d,,;,;sin@ and PN =d,,, sin@

Substituting,
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3.86

3.87

3.88

nA=2d,,sin6d Bragg's Law

A sample of BCC metal was placed in an x-ray diffractometer using x-rays with a
wavelength of A = 0.1541 nm. Diffraction from the {221} planes was obtained at 20 =
88.838°. Calculate a value for the lattice constant a for this BCC elemental metal
(Assume first-order diffraction, n = 1.)

The interplanar distance is,

) A 0.1541 nm —0.1101 nm

T 2sinf 2sin(44.419°)

The lattice constant, a, is then,
a=dyNh* +I*+ 17 =(0.1101 nm)2* + 2% +1* = 0.3303 nm

X-rays of an unknown wavelength are diffracted by a gold sample. The 20 angle was
64.582° for the {220} planes. What is the wavelength of the x-rays used? (The lattice
constant of gold is 0.40788 nm. Assume first-order diffraction, n=1.)

The interplanar distance is,

a _0.40788 nm

= =0.1442 nm
P2+ 2242240

dzzo = \/

The lattice constant, a, is then,
A =2d,y,,sin@ =2(0.1442 nm)sin(32.291°) = 0.154 nm

An x-ray diffractometer recorder chart for an element which has either the BCC or the
FCC crystal structure showed diffraction peaks at the following 20 angles: 41.069°,
47.782°, 69.879°, and 84.396°. (The wavelength of the incoming radiation was
0.15405 nm.)

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element.

(a) Comparing the sin’d term for the first two angles:

20 | 0 | sing | sin’6
41.069° 20.535 035077 | 0.12304
47.782 23.891 0.40499 | 0.16402
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sin® 0, 0.12304

— = =0.75 = FCC
sin“6, 0.16402

(b) The lattice constant also depends upon the first sin®6 term, as well as, the Miller
indices of the first set of FCC principal diffracting planes, {111}.

2, 12, 12 I 2,12, 12
a=£ h +k2 +1/ =0.15405 nm |[1°+1°+1 — 0.38034nm
2 sin” 6, 2 0.12304

(¢) From Appendix I, the FCC metal whose lattice constant is closest to 0.38034
nm is rhodium (Rh) which has a lattice constant of 0.38044 nm.

3.89  An x-ray diffractometer recorder chart for an element which has either the BCC or the
FCC crystal structure showed diffraction peaks at the following 26 angles: 38.60°,

55.71°, 69.70°, 82.55°, 95.00° and 107.67°. (The wavelength A of the incoming radiation

was 0.15405 nm.)

(a) Determine the crystal structure of the element.
(b) Determine the lattice constant of the element.
(c) Identify the element.

(a) Comparing the sin”d term for the first two angles:

20 | 0 | sing | sin®6
I I I
38.60: | 19.30"0 | 0.33051 | 0.10924
55.71 27.855 0.46724 0.21831

sin” 6, 0.10924

—— = =0.50 = BCC
sin“d, 0.21831

(b) The lattice constant also depends upon the first sin’d term, as well as, the Miller
indices of the first set of BCC principal diffracting planes {110}.

2 2 2 2 2 2
a=£ h +Ic2 +/ =0.15405 nm [1“°+1°+0 — 0.3296 nm
2 sin” 6, 2 \' 0.10924

(c) From Appendix I, the BCC metal whose lattice constant is closest to 0.3296
nm is niobium (Nb) which has a lattice constant of 0.33007 nm.
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3.90

3.91

An x-ray diffractometer recorder chart for an element which has either the BCC or the
FCC crystal structure showed diffraction peaks at the following 20 angles: 36.191°,
51.974°, 64.982°, and 76.663°. (The wavelength A of the incoming radiation was
0.15405 nm.)

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element.

(a) Comparing the sin’6 term for the first two angles:

20 | 0 | sing | sin®6
36.1911 18.096: 0.31060 0.09647
51.974 25.987 0.43817 0.19199

sin” 6, 0.09647

—— = =0.50 = BCC
sin“d, 0.19199

(b) The lattice constant also depends upon the first sin’d term, as well as, the Miller
indices of the first set of BCC principal diffracting planes, {110}.

2 2 2 2 2 2
a:i h +k2 +1/ 20.15405 nm fl +1°+0 _ 0.35071 nm
2 sin” 6, 2 0.09647

(c) From Appendix I, the BCC metal whose lattice constant is closest to 0.35071 nm is
lithium (Li) which has a lattice constant of 0.35092 nm.

An x-ray diffractometer recorder chart for an element which has either the BCC or the
FCC crystal structure showed diffraction peaks at the following 26 angles: 40.663°,
47.314°, 69.144°, and 83.448°. (The wavelength A of the incoming radiation was
0.15405 nm.)

(a) Determine the crystal structure of the element.

(b) Determine the lattice constant of the element.

(c) Identify the element.

(a) Comparing the sin’6 term for the first two angles:

20 | 0 | sing | sin’6
40.663: 20.33150" 0.34745 0.12072
47314 23.657 0.40126 0.16101
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sin’ 4, 0.12072

——— = =0.75 = FCC
sin“g, 0.16101

(b) The lattice constant also depends upon the first sin’d term, as well as, the Miller
indices of the first set of FCC principal diffracting planes, {111}.

2,2 12 (2. 12,12
a=i h +k2 +17 _ 015405 nm |17 +17+1 _ 0.38397 nm
2\ sin" 6, 2 0.12072

(c) From Appendix I, the FCC metal whose lattice constant is closest to 0.38397 nm is
iridium (Ir) which has a lattice constant of 0.38389 nm.
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