oAl g rithms . TFem P b NP (Mocet, Shayice)

Worst, Average, and Amortized Analysis

so that ¢(n) is O(n®'°8") for some suitable constant, a. Thus t(n) grows no faster
than a subexponential. In fact, t(n) is ©(n®%8"), as can be shown by further
arguments in the same style.*

Average-Case'Analysis: Binary Search Trees

We now turn to average-case analysis. As noted earlier, such analysis presup-
poses knowledge of the probability distribution of the instances of the problem;
as we also noted, such knowledge is, in fact, rarely available, so that a uniform
distribution (all instances are equally likely) is typically assumed. The difficulties
associated with worst-case analysis all appear in average-case analysis, but they
-are compounded by the need to compute averages, i.e., expressions of the form
Y. pif(i), where p; is the instance probability of object 7. Such sums may not
always lend themselves to reduction to a closed form and thus encumber the
analysis throughout. As even uniform distributions often give rise to binomial
coefficients, average-case analysis often requires familiarity with the manipula-
tion of such coefficients. ‘
Consider the problem of characterizing the average behavior of standard
binary search trees. Although the worst-case behavior for all three operations
(search, insertion, and deletion) is linear, as is easily shown on a tree constructed
from a sorted list, it is well known that these trees behave much better in prac-
tice and usually exhibit logarithmic behavior. How can we prove that such is
indeed the correct average behavior, say for insertion? We begin by postulating
the usual assumption of uniformity: for a given input size n, all n! distinct in-
put sequences (of n insertions) are equally likely. Now let us build the binary
search tree from the “average” input sequence, which we denote ki, ky,... k,.
The first key in the sequence becomes the root of the tree, thereby splitting our
task into two subtasks: building the left subtree and building the right subtree,
respectively. The left subtree contains all keys smaller than k;; assume that there
are n; such keys and let n, =n — 1 — n;. Note that the (n — 1)! possible input
sequences beginning with key k; consist of all possible mergings of the n;! pos-
sible sequences of keys smaller than k; and the n,! possible sequences of keys
larger than k;. This property allows us to proceed recursively.

. %Program 22 is a good example of a “reluctant” algorithm; in fact, this could. be termed a
“multiply-and-surrender” algorithm (as opposed to the divide-and-conquer algorithms of Chapter 7).
In the words of the inventors of this algorithm: “The basic multiply and surrender strategy consists
in replacing the problem at hand with two or more subproblems, each slightly simpler than the
original, and continue multiplying subproblems and subsubproblems recursively in this fashion as
long as possible. At some point the subproblems will all become so simple that their solution can
no longer be postponed, and we will have to surrender. Experience shows that, in most cases, by
the time this point is reached the total work will be substantially higher than what could have been
wasted by a more direct approach.”

87

Chapter 2. Mathematical Techniques

Since each node, once inserted, remains in place, a suitable measure need
only account for the distance from the root to every node in the final tree. One
such measure is the internal path length, I(T), which is simply the sum of these
distances and which equals the total number of comparisons made by all the
insertions while building the tree. The internal path length obeys the recurrence

I(T) = |T| -1+ I(T)) + KT}),

where T denotes a binary tree, |T'] its number of nodes, and T; and 7, its left and
right subtrees. Now we can write a recurrence for I,y(n), the average internal
path length of binary search trees over n keys:

n-1

ILiyin)=n-1+ .:; . Z(Iav(i) +Ly(n-1~ z)) (2.14)

i=0

While the real base case is I,,(1) = 0, we use [, (0) = 0, because we need a value
to substitute into the recurrence. The sum includes all n possible choices for the
root of the tree (i.e.,, all possible choices for k;, the first key in the sequence);
since each chdice determines a unique partition of the keys into the left and the
right subtrees, we simply use the defining recurrence for the internal path length ~
to obtain (2.14). , 9

Now, this recurrence is not in a form which we can handle, because it in- 1
volves all terms of lower order. Such recurrences, called full-history recurrences,
occur commonly in the analysis of algorithms and can almost always be reduced
to a form with a fixed number of terms by the simple expedient of subtracting
the value at n — 1 from the value at n, with coefficients chosen so as to cancel
lower-order terms. In the present case, we choose the subtraction

nvlav(n) - (n - 1)‘Iav(n - 1)5

so that, upon substituting from Equation 2.14 and simplifying (the two sums
cancel except for the highest term), we get

nlyn)-n-1D)ILy(n—-1)=2n~-2+2L,{n—-1)
or
n-l(n) — (n+1)-Ioy(n — 1) = 2n — 2.

Only two function terms appear; however, they do not have constant coefficients.
This difficulty can be overcome by dividing throughout by n(n + 1) to yield

1 1 n -1
T av(n) ~ n av(n — nﬂ.Z*Wﬁn(n-{-l)'

Worst, Average, and Amortized Analysis

and by substituting g(n) = I (n)/(n + 1), to get the linear recurrence with con-
stant coefficients

But note that, for i > 3, we have

1 i—1 1

[S— <__“’
P73 S+ Six2

so that we may write

i l
g(n) = e(; =)
The sum term appearing in this equation is known as a harmonic number, more
precisely in this case, the nth harmonic number, H,. Recalling from calculus
that Y°7_, 1/i is bounded below by f'""'(1/z)dz and bounded above by 1 +

f'(1/z) dz, we get

Inn+ D <H, <Inn+1,
and thus H, = ©O(logn). Hence we have g(n) = ©(logn) and thus I (n) =
O(nlogn). At great expense of time and patience, we could obtain a more
precise characterization by keeping the driving term intact, but we have argued
that algorithmic analysis should be in asymptotic terms and thus have no need for
additional precision. The result confirms our expectations: the average internal
path length of binary search trees is optimal in ©() terms.

Since a successful search stops at a node in the tree, its average behavior
can be characterized in terms of the internal path length of the tree, namely,
by I(T')/|T|. Since insertion takes place at external nodes, it corresponds to an
unsuccessful search, and thus its behavior can be characterized in terms of the
external path length of the tree, namely, by E(T)/(|T] +1). A simple induction
argument shows that E(T') = I(T) + 2|T|. Therefore, our results also imply that,
‘on average, both successful and unsuccessful searches run in logarithmic time;
however, the same reasoning cannot be extended to the average height of the
trees—although it is, in fact, logarithmic as well.

