
Unit 6. Part 2. Structures

UNIT 6.
STRUCTURED DATA TYPES
PART 2: STRUCTURES IN C

Programming

Year 2017-2018

Industrial Technology Engineering

Paula de Toledo

Unit 6. Part 2. Structures

2

2

Contents

• 6.1. Arrays

• 6.2 Structures
• 6.2.1. Concept

• Declaring structures

• Structure members

• Using structures: Assign values, initialize

• 6.2.2. Nested structures (structures as members of a structure)

• 6.2.3. Arrays as members of a structure

• 6.2.4. Arrays of structures (structures as elements of an array)

• 6.2.5. Structures arguments of functions

Unit 6. Part 2. Structures

6.2 STRUCTURES

Unit 6. Part 2. Structures

4

4

Structures

• User defined datatype to combine data items of different
kinds

• Structures are used to represent a record, grouping under the
same name data items of the same or different datatype that
are logically related
• Example 1 : store a name, surname and telephone number in a structure

named typeContact

• Example 2: Structure to manage email accounts

• Login (string), password(string), e-mail (string) and user id (int)

name

phone number

surname typeContact

Unit 6. Part 2. Structures

5

5

Declaring structures

• To declare a structure you need two steps

• STEP 1. Declare the structure itself

• It's a new type of data!!

• STEP 2. Declare one (or more) variables of the new type defined in
step 1

Unit 6. Part 2. Structures

6

6

Declaring a structure

• Step 1: Declare the structure (the datatype)

struct name_structure {

 DataType_1 element_1;

 DataType_2 element_2;

 DataType_n element_N;

};

• Example:

struct typeAccount {

 char login [256];

 char password [256];

 char email [256];

 int userId;

};

Unit 6. Part 2. Structures

7

7

Declaring a structure

• Step 1: Declare the structure (the datatype)

• More examples
• structure to store personal information of a person

struct typePerson{

char name[20];

 char surname [50];

 int age;

 float height;

};

• structure to work with a point in a plane

struct typeCoordinates{

 float x;

 float y;

};

Unit 6. Part 2. Structures

8

8

Declaring a structure

• STEP 2: Declaring a variable of the datatype

• template:
struct structure_ name variable _ name;

• Examples
struct typeCoordinates pointA;

struct typePerson myNeighbour ;

struct typeAccount myAccount;

Unit 6. Part 2. Structures

9

9

Structure members

• Components of a structure are called members

• To access any member of a structure, we use the member
access operator (.).
• Different to arrays where elements are accessed using the index

myAccount.login

myAccount.password

• myAccount is a variable of type “typeAccount ", a user defined datatype

• (.) is the member access operator

• login and password are the names of two members of the "
typeAccount” structure

Unit 6. Part 2. Structures

10

10

Assign values to structure members and structures

• Two options
• Assign value to each structure member individually

 myNeighbour.age = 22;

 myNeighbour.height = 1.90;

 strcpy (myNeighbour.name, "Juan");

• Assigning one whole structure to another

myBoyFriend = myNeighbour;

Unit 6. Part 2. Structures

11

11

Using structures - example

// Step 1. Declare the datatype

struct typePerson {

 char name[20];

 char surname [50];

 int age;

 float height;

struct point3D {

 float x;

 float y;

 float z;

};

// Step 2. Declare the variable using the datatype

struct point3D pointA;

struct typePerson myNeighbour;

struct typePerson myBoyFriend;

Unit 6. Part 2. Structures

12

12

Using structures

// Step 3. Use the datatype

puntoA.y =100;

strcpy(myNeighbour.name, "Pablo");

myNeighbour.age = 20;

myNeighbour.heigth = 1.90;

printf("%s \n", myNeighbour.name);

printf("%i \n", myNeighbour.age);

printf("%4.2f \n", vmyNeighbour.heigth);

Unit 6. Part 2. Structures

13

13

Structure initialization

• We can initialize all members of a variable of type structure in the
variable declaration

• Similar to vectors

• struct tipoCoordenadas {

 float x;

 float y;

};

struct Example{

 char letra;

 long entero;

 char palabra[20];

 };

struct Point3D point1 = {2.1, 3.4, 9.8};

struct Example Example1 = {'a', 23, "Hola"};

Unit 6. Part 2. Structures

6.2.3 NESTED STRUCTURES

Unit 6. Part 2. Structures

15

15

Nested structures

• Members of a structure can be variables of any data type,
either simple (int, float, char, pointer.), or structured (array,
another structure)

• A structure inside another structure is called a nested
structure

struct typeTelephone{

 char name[256];

 long cell_number;

};

struct typeEmail{

 char login[256];

 char email_address [256];

};

struct typeUser{

 struct typeTelContact telephone;

 struct typeEmail email;

};

typeTelephone

name

typeEmail
typeUser

cell_number

login

email_address

telephone

email

Unit 6. Part 2. Structures

16

16

Access to members in nested structures

• To access a member nested in a structure we use the member
access operator, (.), as may times as needed

struct typeUser user1;

user1.telephone.cell_number=684567123;

printf ("%s", user1.telephone.name);

strcpy(user1.email.email_address, "abc@xyz.com");

printf ("%s", user1.email.email_address]);

typeTelephone

name

typeEmail
typeUser

cell_number

login

email_address

telephone

email

Unit 6. Part 2. Structures

6.2.3 ARRAYS AS MEMBERS OF A
STRUCTURE

Unit 6. Part 2. Structures

18

18

Arrays as members of a structure

• Members of a structure can be variables of any data type,
either simple or structured (array, another structure)
• Arrays, vectors and strings

• To access one element of the array, use the index

struct typeStudent {

 char name[20];

 char surname [50];

 int age;

 float height;

 float marks[20]; // marks in each subject

};
struct typeStudent student1;
student1.marks[0]=10.0;
student1.marks[1]=5.0;
student1.name[0]='J'; // change intial letter of name

Unit 6. Part 2. Structures

6.2 ARRAYS OF STRUCTURES

Unit 6. Part 2. Structures

20

20

Arrays of structures

• Vectors or matrixes where the elements are structures

• Specially useful to store and manage information
• Very seldom we use structures alone, more typical to use a vector of

structures

• Example: vector of students to store data from a class

• Declaration
• Template:

• struct name_structure name_array [size];

• The structure has to be declared beforehand

• Example

• struct typeStudent class [135];

• Use
• class[1].age = 18;

• class[1].height= 1.63;

Unit 6. Part 2. Structures

21

21

Vector of structures. example 2

// Step 1. declare structure
struct typeItem {
 float price;
 int amount;
 char name[30];
};

// Step 2. declare a vector of 20 elements
// where each element is a variable of the typeItem
struct typeItem products[100];

//access amount of the third item in the list
 productos[2].amount =1;

products[0]

products[1]

products[2]

products[3]

17.95 3 “fanta"

30.95 1 “trina"

15.95 10 "cocacola"

27.95 12 “pepsi"

price amount name

Unit 6. Part 2. Structures

22

22

Vector of structures: example 3

// Step 1. declare structure

struct tipoFecha{

 int dia;

 int mes;

 int anyo; //ñ char not allowed in C

};

// Step 2. declare a vector where each element is a structure

struct tipoFecha fechaNac[4];

//access vector element and member

 fechaNac[2].anyo =2010;

dia mes anyo

fechaNac[0]

fechaNac[1]

fechaNac[2]

fechaNac[3]

17 3 2001

30 1 2003

5 10 1998

27 12 2010

dia mes anyo

Unit 6. Part 2. Structures

23

23

Example 4: Vector of structures as member of a structure

struct Point2D {
 float x;
 float y;
};

struct Triangle {
 // members of the structure are other structures
 struct Point2D a;
 struct Point2D b;
 struct Point2D c;
};

struct Dodecahedron {
 // members of this structure are a vector of structures
 struct Point2D points[12];
};

Unit 6. Part 2. Structures

6.2.3 STRUCTURES AS ARGUMENTS
OF FUNCTIONS

Unit 6. Part 2. Structures

25

25

Structures as arguments

• You can use structures as a function argument in the same
way as any other variable

• Structures have to be defined before any function that uses it
• We recommend you define all structures before the main

• By default, structures are passed by value
• As are int, float, char

• When the value of a field of the structure is modified in a function, this
change is not reflected in the parameter in the main

• Structures can also be passed by reference

• Structures can be returned with return

Unit 6. Part 2. Structures

26

26

Passing structures by reference

• You can define pointers to structures in the same way as you
define pointer to any other variable

• To pass the structure by reference
• Function header + declaration (formal parameter)

• The formal parameter is a pointer to the structure

• To access the structure use indirection operator

• Example: *product

• To access a member of the structure (two options

• Use member access operator (.)

• (*product). price

• Use -> operator

• product->price is the same as (*product). price

• Call to the function (actual parameter)

• & preceding the parameter

Unit 6. Part 2. Structures

27

27

Structures as parameters. Example 1

• Write a program to read a point's coordinates in a three dimensional space
and find the distance from the point to the origin (0,0,0)

#include <stdio.h>
#include <math.h>
// structure declaration
struct typePoint {
 float x, y, z;
};
// prototypes
void readPoint (struct typePoint *p);
float (struct typePoint p);

int main(void){
 struct typePoint pto;
 readPoint (&pto);
 printf ("Distance from point to origin: %f\n", findDist(pto));
 system ("PAUSE");
 return 0;
}

Pass by REFERENCE *p
The function modifies the value

Pass by VALUE
The function doesn't modify the value

By REFERENCE
&pto

By VALUE
pto

Unit 6. Part 2. Structures

float findDist (struct typePoint p) {
 // find distance to origin
 return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
}

void readPoint (struct typePoint *p){
 printf ("X?: "); scanf("%f", &(*p).x);
 printf ("Y?: "); scanf("%f", &(*p).y);
 printf ("Z?: "); scanf("%f", &(*p).z);
 return;
}

// readPoint with arrow operator
void readPoint(struct typePoint *p) {
 printf ("X?: "); scanf("%f", &p->x);
 printf ("Y?: "); scanf("%f", &p->y);
 printf ("Z?: "); scanf("%f", &p->z);
 return;
}

By REFERENCE: *p
To access structure

members use
(*p).z

By VALUE: p
here * is the product,

nothing to do with
pointers

& from scanf

p->z is the same as
(*p).z

Unit 6. Part 2. Structures

29

29

Structures as parameters. Example 2

#include <stdio.h>

#include <string.h>

define NPROD 4

// structure typeProduct

struct typeProduct {

 char name [15];

 char code[10];

 float price;

 int is_fake; // flag for fake products: 1 if fake, 0 if not

};

void checkProduct (struct typeProduct *p);

checkProduct modifes the value of the
structure PASS BY REFERENCE

*p

Write a program defining a vector to store data regarding several products,
checking if these products are fake and finding the total number of false products.

A product is fake if it's code starts with "UEX".

Unit 6. Part 2. Structures

30

30

void checkProduct (struct typeProduct *p) {

 // Function that takes as parameter a product

 // and modifies the value of member is_fake

 // depending on the product code

 // only products with codes starting with UEX are authentic

// initialize to false

(*p).is_fake = 1;

 //verify code

 if (((*p).code[0]=='U') && ((*p).code [1]=='E') && ((*p).code [2]=='X')) {

 (*p). is_fake = 0;

 }

 return;

}

By REFERENCE: *p

To access the structure
members, use brackets

(*p).is_fake
(*p).code[2]

Unit 6. Part 2. Structures

31

31

int main(void){

 // vector with four products

 struct typeProduct prod[NPROD];

 int i, tot_fake=0;

 //assign values to the codes

 strcpy (prod[0].code, "UEX1002");

 strcpy (prod[1].code, "UEX2002");

 strcpy (prod[2].code, "UET3002");

 strcpy (prod[3].code, "UEZ1002");

 // ………….

 // check how many are fake

 for (i=0; i<NPROD; i++){

 checkProduct (&prod[i]);

 tot_fake= tot_fake + prod[i].is_fake;

 }

 printf ("There are %i fake products \n", tot_fake);

 return 0;

}

By REFERENCE
&prod[i]

Unit 6. Part 2. Structures

UNIT 6.
STRUCTURED DATA TYPES

PART 2: STRUCTURES

