UNIT 6.
STRUCTURED DATA TYPES
PART 2: STRUCTURES IN C

Programming
Year 2017-2018
Industrial Technology Engineering

Paula de Toledo

7N Universidad
§ Carlos III de Madrid

%) i &
Rg® WWwuc3mes

Unit 6. Part 2. Structures

Contents

* 6.1. Arrays

* 6.2 Structures
6.2.1. Concept
Declaring structures

Structure members
Using structures: Assign values, initialize

6.2.2. Nested structures (structures as members of a structure)

6.2.3. Arrays as members of a structure

6.2.4. Arrays of structures (structures as elements of an array)

6.2.5. Structures arguments of functions

i Universidad

www.uc3mes

6.2 STRUCTURES

Unit 6. Part 2. Structures

Structures

* User defined datatype to combine data items of different
Kinds

* Structures are used to represent a record, grouping under the
same name data items of the same or different datatype that
are logically related

* Example 1 : store a name, surname and telephone number in a structure
named typeContact

name

typeContact surname

phone number

* Example 2: Structure to manage email accounts
Login (string), password(string), e-mail (string) and user id (int)

Unit 6. Part 2. Structures

Declaring structures

* To declare a structure you need two steps

 STEP 1. Declare the structure itself
It's a new type of data!!

« STEP 2. Declare one (or more) variables of the new type defined in
step 1

Unit 6. Part 2. Structures

Declaring a structure
* Step 1: Declare the structure (the datatype)

struct name structure ({
DataType 1 element 1;
DataType 2 element 2;

DataType n element N;
b7

* Example:

struct typeAccount {
char login [256];
char password [256];
char email [250];
int userlId;

Unit 6. Part 2. Structures

Declaring a structure

* Step 1: Declare the structure (the datatype)

* More examples
* structure to store personal information of a person
struct typePerson/{
char name[20];
char surname [50];
int age;
float height;
b

* structure to work with a pointin a plane
struct typeCoordinates{

float x;
float vy;

Unit 6. Part 2. Structures

Declaring a structure

» STEP 2: Declaring a variable of the datatype

* template:
struct structure_name variable name;

* Examples
struct typeCoordinates pointA;
struct typePerson myNeighbour;
struct typeAccount myAccount;

Unit 6. Part 2. Structures

Structure members

* Components of a structure are called members

* To access any member of a structure, we use the member
access operator (.).

* Different to arrays where elements are accessed using the index

myAccount.login
myAccount.password

* myAccount is a variable of type “typeAccount ", a user defined datatype
* (.) is the member access operator

* login and password are the names of two members of the "
typeAccount” structure

Unit 6. Part 2. Structures

Assign values to structure members and structures

* Two options
 Assign value to each structure member individually
myNelghbour.age = 22;
myNeighbour.height = 1.90;

strcpy (myNeighbour.name, "Juan");

 Assigning one whole structure to another

myBoyFriend = myNeighbour;

10

Unit 6. Part 2. Structures

Using structures - example

// Step 1. Declare the datatype
struct typePerson {

char name[20];

char surname [50];

int age;

float height;

struct point3D {
float x;
float vy;
float z;

s

// Step 2. Declare the variable using the datatype
struct point3D polntA;

struct typePerson myNeilghbour;

struct typePerson myBoyFriend;

11

Unit 6. Part 2. Structures

Using structures

// Step 3. Use the datatype
puntoA.y =100;

strcpy (myNeighbour.name, "Pablo");
myNeighbour.age = 20;
myNeighbour.heigth = 1.90;

printf ("%$s \n", myNeighbour.name) ;

printf ("%$i \n", myNeighbour.age);
printf ("$4.2f \n", vmyNeighbour.heigth) ;

12

Unit 6. Part 2. Structures

Structure initialization

* We can initialize all members of a variable of type structure in the
variable declaration

* Similar to vectors

* struct tipoCoordenadas {
float x;
float vy;
I
struct Example{
char letra;
long entero;
char palabra([20];
i
struct Point3D pointl = {2.1, 3.4, 9.8};
struct Example Examplel = {'a', 23, "Hola"};

13

6.2.3 NESTED STRUCTURES

Unit 6. Part 2. Structures

Nested structures

* Members of a structure can be variables of any data type,
either simple (int, float, char, pointer.), or structured (array,
another structure)

* A structure inside another structure is called a nested

structure
telephone
A
[|
t t t Teleph
struc ypeTelephone{ e
char name[256]; _J:
long cell number; typeTelephone cell_number
. typeUser {)
’ | typeEmail
struct typeEmail { _kilogn
char login[256]; .
g.l [] email_address
char email address [256]; \

J

I Y
struct typeUser({ email
struct typeTelContact telephone;
struct typeEmail email;
I
15

Unit 6. Part 2. Structures

Access to members in nested structures

* To access a member nested in a structure we use the member
access operator, (.), as may times as needed

telephone
\
[|
— name
typeTelephone —— cell_number
typeUser {
typeEmail —
— login
— email_address
(' J
struct typeUser userl; email

userl.telephone.cell number=684567123;

printf ("%s", userl.telephone.name);

strcpy(userl.email.email address, "abc@xyz.com");
printf ("%s", userl.email.email address]);

16

6.2.3 ARRAYS AS MEMBERS OF A
STRUCTURE

Unit 6. Part 2. Structures

Arrays as members of a structure

* Members of a structure can be variables of any data type,
either simple or structured (array, another structure)

* Arrays, vectors and strings
To access one element of the array, use the index

struct typeStudent {

char name[20];

char surname [50];

int age;

float height;

float marks[20]; // marks in each subject
}s
struct typeStudent studentl;
studentl.marks[0]=10.0;
studentl.marks[1]=5.0;
studentl.name[0@]=']"'; // change intial letter of name

18

6.2 ARRAYS OF STRUCTURES

Unit 6. Part 2. Structures

Arrays of structures

* Vectors or matrixes where the elements are structures

* Specially useful to store and manage information

* Very seldom we use structures alone, more typical to use a vector of
structures

* Example: vector of students to store data from a class

* Declaration
* Template:
struct name_structure name_array [size];
The structure has to be declared beforehand
* Example
struct typeStudent class [135];

* Use
* class|[1].age = 18;
* class[1].height=1.63;
20

Unit 6. Part 2. Structures

Vector of structures. example 2

// Step 1. declare structure

Str‘uct typeItem { price amount name
float price; ProgUCES[gl 15.95 10 “cocacola’
int amount; PrOdUC 5[2] 17.95 3 fanta’
char name[30]; products] 2] | HS0:98 L _tina_

products[3] [27.95 12 pepsi

}s

// Step 2. declare a vector of 20 elements
// where each element is a variable of the typelItem
struct typeltem products[100];

//access amount of the third item in the 1list
productos[2].amount =1;

21

Unit 6. Part 2. Structures

Vector of structures: example 3

// Step 1. declare structure

struct tipoFecha(
int dia; dia
int mes;
int anyo; //fi char not allowed in C

s

mes anyo

// Step 2. declare a vector where each element is a structure
struct tipoFecha fechaNacl[4];

dia mes anyo
fechaNac[0] S 10 1998
fechaNac[1] 17 3 2001
fechaNac[2] 30 I 2003
fechaNac[3] 27 12 | 2010

//access vector element and member
fechaNac([2] .anyo =2010;

22

Unit 6. Part 2. Structures

Example 4: Vector of structures as member of a structure

struct Point2D {
float x;
float vy;

}s;

struct Triangle {
// members of the structure are other structures
struct Point2D a;
struct Point2D b;
struct Point2D c;

}s

struct Dodecahedron {
// members of this structure are a vector of structures
struct Point2D points[12];

}s

23

6.2.3 STRUCTURES AS ARGUMENTS
OF FUNCTIONS

Unit 6. Part 2. Structures

Structures as arguments

* You can use structures as a function argument in the same
way as any other variable

Structures have to be defined before any function that uses it

* We recommend you define all structures before the main

By default, structures are passed by value
* As are int, float, char

 When the value of a field of the structure is modified in a function, this
change is not reflected in the parameter in the main

Structures can also be passed by reference

Structures can be returned with return

25

Unit 6. Part 2. Structures

Passing structures by reference

* You can define pointers to structures in the same way as you
define pointer to any other variable

* To pass the structure by reference
* Function header + declaration (formal parameter)
The formal parameter is a pointer to the structure
To access the structure use indirection operator
* Example: *product
To access a member of the structure (two options
* Use member access operator (.)
(*product). price
* Use -> operator
product->price is the same as (*product). price

* (Call to the function (actual parameter)
& preceding the parameter

26

Unit 6. Part 2. Structures

Structures as parameters. Example 1

* Write a program to read a point's coordinates in a three dimensional space
and find the distance from the point to the origin (0,0,0)

#include <stdio.h>
#include <math.h>
// structure declaration
struct typePoint {

float x, y, z;
}s
// prototypes

void readPoint (struct typePoint *p); ////

float (struct typePoint p);

int main(void){
struct typePoint pto;

Pass by REFERENCE *p
The function modifies the value

Pass by VALUE
The function doesn't modify the value

By REFERENCE
&pto

/

readPoint (&pto);

printf ("Distance from point to origin: %f\n", findDist(pto));

system ("PAUSE");
return 0;

}

)

By VALUE
pto

27

Unit 6. Part 2. Structures

float findDist (struct typePoint p) {
// find distance to origin
return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);

By VALUE: p
here * is the product,
nothing to do with

void readPoint (struct typePoint *p){ pointers
printf ("X?: "); scanf("%f", &(*p).x);
printf ("Y?: "); scanf("%f", &(*p).y); By REFERENCE: *p
printf ("Z?: "); scanf("%f", &(*p).z); To access structure
return; == members use

} (*p).z

// readPoint with arrow operator

void readPoint(struct typePoint *p) {
printf ("X?: "); scanf("%f", &p->x);
printf ("Y?: "); scanf("%f", &p->y);
printf ("Z?: "); scanf("%f", &p->z);

return;
} p->z is the same as

(*p).z

& from scanf

Unit 6. Part 2. Structures

Structures as parameters. Example 2

Write a program defining a vector to store data regarding several products,
checking if these products are fake and finding the total number of false products.

A product is fake if it's code starts with "UEX".

#include <stdio.h>
#include <string.h>
define NPROD 4

// structure typeProduct

struct typeProduct {
char name [15];
char code[10];
float price;

checkProduct modifes the value of the
structure PASS BY REFERENCE

*p

int is fake; // flag for fake products:|1 if fake, 0 if not

b g

void checkProduct (struct typeProduct *p);

29

Unit 6. Part 2. Structures

void checkProduct (struct typeProduct *p) {
// Function that takes as parameter a product
// and modifies the value of member is fake
// depending on the product code
// only products with codes starting with UEX are authentic

// 1nitialize to false

(*p) .1s _fake = 1;

//verify code

if (((*p) .code[0]=='U") && ((*p).code [1]=='E') && ((*p).code [2]=="X")) {
(*p) . 1s fake = 0;

}

return;

}

By REFERENCE: *p
To access the structure
members, use brackets

(*p).is_fake
(*p).code[2]

30

Unit 6. Part 2. Structures

int main(void){
// vector with four products
struct typeProduct prod[NPROD];
int i, tot fake=0;
//assign values to the codes
strcpy (prod[0].code, "UEX1002");
strcpy (prod[1l].code, "UEX2002");
strcpy (prod[2].code, "UET3002");
strcpy (prod[3].code, "UEZ1002");
Vo . By REFERENCE
// check how many are fake &prodfi]
for (i=0; i<NPROD; i++){
checkProduct (&prod[i]);
tot fake= tot fake + prod[i].is_fake;

}
printf ("There are %i fake products \n", tot fake);

return O;

31

UNIT 6.
STRUCTURED DATA TYPES

PART 2: STRUCTURES

