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Structures

* User defined datatype to combine data items of different
Kinds

* Structures are used to represent a record, grouping under the
same name data items of the same or different datatype that
are logically related

* Example 1 : store a name, surname and telephone number in a structure
named typeContact

name

typeContact surname

phone number

* Example 2: Structure to manage email accounts
Login (string), password(string), e-mail (string) and user id (int)
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Declaring structures

* To declare a structure you need two steps

 STEP 1. Declare the structure itself
It's a new type of data!!

« STEP 2. Declare one (or more) variables of the new type defined in
step 1
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Declaring a structure
* Step 1: Declare the structure (the datatype)

struct name structure ({
DataType 1 element 1;
DataType 2 element 2;

DataType n element N;
b7

* Example:

struct typeAccount {
char login [256];
char password [256];
char email [250];
int userlId;
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Declaring a structure

* Step 1: Declare the structure (the datatype)

* More examples
* structure to store personal information of a person
struct typePerson/{
char name[20];
char surname [50];
int age;
float height;
b

* structure to work with a pointin a plane
struct typeCoordinates{

float x;
float vy;
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Declaring a structure

» STEP 2: Declaring a variable of the datatype

* template:
struct structure_name  variable name;

* Examples
struct typeCoordinates pointA;
struct typePerson myNeighbour;
struct typeAccount myAccount;
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Structure members

* Components of a structure are called members

* To access any member of a structure, we use the member
access operator (.).

* Different to arrays where elements are accessed using the index

myAccount.login
myAccount.password

* myAccount is a variable of type “typeAccount ", a user defined datatype
* (.) is the member access operator

* login and password are the names of two members of the "
typeAccount” structure
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Assign values to structure members and structures

* Two options
 Assign value to each structure member individually
myNelghbour.age = 22;
myNeighbour.height = 1.90;

strcpy (myNeighbour.name, "Juan");

 Assigning one whole structure to another

myBoyFriend = myNeighbour;
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Using structures - example

// Step 1. Declare the datatype
struct typePerson {

char name[20];

char surname [50];

int age;

float height;

struct point3D {
float x;
float vy;
float z;

s

// Step 2. Declare the variable using the datatype
struct point3D polntA;

struct typePerson myNeilghbour;

struct typePerson myBoyFriend;

11



Unit 6. Part 2. Structures

Using structures

// Step 3. Use the datatype
puntoA.y =100;

strcpy (myNeighbour.name, "Pablo");
myNeighbour.age = 20;
myNeighbour.heigth = 1.90;

printf ("%$s \n", myNeighbour.name) ;

printf ("%$i \n", myNeighbour.age);
printf ("$4.2f \n", vmyNeighbour.heigth) ;
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Structure initialization

* We can initialize all members of a variable of type structure in the
variable declaration

* Similar to vectors

* struct tipoCoordenadas {
float x;
float vy;
I
struct Example{
char letra;
long entero;
char palabra([20];
i
struct Point3D pointl = {2.1, 3.4, 9.8};
struct Example Examplel = {'a', 23, "Hola"};
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Nested structures

* Members of a structure can be variables of any data type,
either simple (int, float, char, pointer.), or structured (array,
another structure)

* A structure inside another structure is called a nested

structure
telephone
A
[ |
t t t Teleph
struc ypeTelephone{ e
char name[256]; _J:
long cell number; typeTelephone cell_number
. typeUser { )
’ | typeEmail
struct typeEmail { _kilogn
char login[256]; .
g.l [ ] email_address
char email address [256]; \

J

I Y
struct typeUser({ email
struct typeTelContact telephone;
struct typeEmail email;
I
15



Unit 6. Part 2. Structures

Access to members in nested structures

* To access a member nested in a structure we use the member
access operator, (.), as may times as needed

telephone
\
[ |
— name
typeTelephone —— cell_number
typeUser {
typeEmail —
— login
— email_address
( ' J
struct typeUser userl; email

userl.telephone.cell number=684567123;

printf ("%s", userl.telephone.name);

strcpy( userl.email.email address, "abc@xyz.com");
printf ("%s", userl.email.email address]);
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Arrays as members of a structure

* Members of a structure can be variables of any data type,
either simple or structured (array, another structure)

* Arrays, vectors and strings
To access one element of the array, use the index

struct typeStudent {

char name[20];

char surname [50];

int age;

float height;

float marks[20]; // marks in each subject
}s
struct typeStudent studentl;
studentl.marks[0]=10.0;
studentl.marks[1]=5.0;
studentl.name[0@]=']"'; // change intial letter of name

18
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Arrays of structures

* Vectors or matrixes where the elements are structures

* Specially useful to store and manage information

* Very seldom we use structures alone, more typical to use a vector of
structures

* Example: vector of students to store data from a class

* Declaration
* Template:
struct name_structure name_array [size];
The structure has to be declared beforehand
* Example
struct typeStudent class [135];

* Use
* class|[1].age = 18;
* class[1].height=1.63;
20
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Vector of structures. example 2

// Step 1. declare structure

Str‘uct typeItem { price amount name
float price; ProgUCES[gl 15.95 10 “cocacola’
int amount; PrOdUC 5[2] 17.95 3 fanta’
char name[30]; products] 2] | HS0:98 L _tina_

products[3] [ 27.95 12 pepsi

}s

// Step 2. declare a vector of 20 elements
// where each element is a variable of the typelItem
struct typeltem products[100];

//access amount of the third item in the 1list
productos[2].amount =1;
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Vector of structures: example 3

// Step 1. declare structure

struct tipoFecha(
int dia; dia
int mes;
int anyo; //fi char not allowed in C

s

mes anyo

// Step 2. declare a vector where each element is a structure
struct tipoFecha fechaNacl[4];

dia mes  anyo
fechaNac[0] S 10 1998
fechaNac[1] 17 3 2001
fechaNac[2] 30 I 2003
fechaNac[3] 27 12 | 2010

//access vector element and member
fechaNac([2] .anyo =2010;
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Example 4: Vector of structures as member of a structure

struct Point2D {
float x;
float vy;

}s;

struct Triangle {
// members of the structure are other structures
struct Point2D a;
struct Point2D b;
struct Point2D c;

}s

struct Dodecahedron {
// members of this structure are a vector of structures
struct Point2D points[12];

}s
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Structures as arguments

* You can use structures as a function argument in the same
way as any other variable

Structures have to be defined before any function that uses it

* We recommend you define all structures before the main

By default, structures are passed by value
* As are int, float, char

 When the value of a field of the structure is modified in a function, this
change is not reflected in the parameter in the main

Structures can also be passed by reference

Structures can be returned with return
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Passing structures by reference

* You can define pointers to structures in the same way as you
define pointer to any other variable

* To pass the structure by reference
* Function header + declaration (formal parameter)
The formal parameter is a pointer to the structure
To access the structure use indirection operator
* Example: *product
To access a member of the structure (two options
* Use member access operator (.)
(*product). price
* Use -> operator
product->price is the same as (*product). price

* (Call to the function (actual parameter)
& preceding the parameter

26
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Structures as parameters. Example 1

* Write a program to read a point's coordinates in a three dimensional space
and find the distance from the point to the origin (0,0,0)

#include <stdio.h>
#include <math.h>
// structure declaration
struct typePoint {

float x, y, z;
}s
// prototypes

void readPoint (struct typePoint *p); ////

float (struct typePoint p);

int main(void){
struct typePoint pto;

Pass by REFERENCE *p
The function modifies the value

Pass by VALUE
The function doesn't modify the value

By REFERENCE
&pto

/

readPoint (&pto);

printf ("Distance from point to origin: %f\n", findDist(pto));

system ("PAUSE");
return 0;

}

)

By VALUE
pto
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float findDist (struct typePoint p) {
// find distance to origin
return sqrt(p.x * p.x + p.y * p.y + p.z * p.z);

By VALUE: p
here * is the product,
nothing to do with

void readPoint (struct typePoint *p){ pointers
printf ("X?: "); scanf("%f", &(*p).x);
printf ("Y?: "); scanf("%f", &(*p).y); By REFERENCE: *p
printf ("Z?: "); scanf("%f", &(*p).z); To access structure
return; == members use

} (*p).z

// readPoint with arrow operator

void readPoint(struct typePoint *p) {
printf ("X?: "); scanf("%f", &p->x);
printf ("Y?: "); scanf("%f", &p->y);
printf ("Z?: "); scanf("%f", &p->z);

return;
} p->z is the same as

(*p).z

& from scanf
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Structures as parameters. Example 2

Write a program defining a vector to store data regarding several products,
checking if these products are fake and finding the total number of false products.

A product is fake if it's code starts with "UEX".

#include <stdio.h>
#include <string.h>
# define NPROD 4

// structure typeProduct

struct typeProduct {
char name [15];
char code[10];
float price;

checkProduct modifes the value of the
structure PASS BY REFERENCE

*p

int is fake; // flag for fake products:|1 if fake, 0 if not

b g

void checkProduct (struct typeProduct *p);

29
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void checkProduct (struct typeProduct *p) {
// Function that takes as parameter a product
// and modifies the value of member is fake
// depending on the product code
// only products with codes starting with UEX are authentic

// 1nitialize to false

(*p) .1s _fake = 1;

//verify code

if (((*p) .code[0]=='U") && ((*p).code [1]=='E') && ((*p).code [2]=="X")) {
(*p) . 1s fake = 0;

}

return;

}

By REFERENCE: *p
To access the structure
members, use brackets

(*p).is_fake
(*p).code[2]
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int main(void){
// vector with four products
struct typeProduct prod[NPROD];
int i, tot fake=0;
//assign values to the codes
strcpy (prod[0].code, "UEX1002");
strcpy (prod[1l].code, "UEX2002");
strcpy (prod[2].code, "UET3002");
strcpy (prod[3].code, "UEZ1002");
Vo . By REFERENCE
// check how many are fake &prodfi]
for (i=0; i<NPROD; i++){
checkProduct (&prod[i]);
tot fake= tot fake + prod[i].is_fake;

}
printf ("There are %i fake products \n", tot fake);

return O;
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