
Topic 6. Radiation Fundamentals 

Telecommunication Systems Fundamentals

Profs. Javier Ramos & Eduardo Morgado
Academic year 2.013-2.014

Concepts in this Chapter

• Antennas: definitions and classification

• Antenna parameters

• Fundamental Theorems: uniqueness and reciprocity. Images' 
method

• Friis' equation

• Link Budget of a Radio-Link
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Theory classes: 1.5 sessions (3 hours)
Problems resolution: 0.5 session (1 hours)
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Introduction: Radio-Telecommunication Systems

• Info transmission implies to transmit a signal (with a 

given energy) through a radio-channel
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Introduction: Transmitting and Receiving Antenna

• An antenna can either transmit (radiate) energy in 

Transmission

• Or capture energy in Reception

Telecommunication Systems Fundamentals

5

Radiation Performance of an Antenna

• Radiation is the electromagnetic energy flux outward 

form a source

• Basic Problem in electromagnetic theory: 
– Calculus of the electromagnetic field produced by a structure 

in any given space point
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From Electrical Currents within the 

Tx’ing antenna structure

From the Electromagnetic Field 

distribution along a closed surface 

that surrounds the Tx’ing antenna



Efficiency as Main Objetive in Antennas

• Efficiency is the main objective when designing/ 

selecting an antenna

– Maximize the electromagnetic field power in a given point 

given an amount of power provided to the antenna

• Which antenna parameters should we consider
– Phase Center

– Power Parameters

» Radiated power flux density 

» Radiation intensity

» Directivity

» Power Gain  

– Gain diagram

– Polarization

– Bandwidth
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Power Parameters: Poynting’s Theorem

• Complex Poynting’s Vector: electromagnetic energy 

flux density through a given surface

• Average Power: Poynting’s vector flux
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Power Parameters: Radiation Density

• Average radiated power per surface unit in a given 

direction
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Power Parameters: Radiated Power

• Sum up radiated flux density along a sphere surface 

that circumscribe the antenna
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Power Parameters: Radiation Intensity

• Average radiated power per solid angle unit in a 

given direction
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Power Parameters: Radiation Intensity

• Independently of the distance from the antenna

• The Power Flux Density decreases with distance

inversely proportional to the area of the spherical solid 

angle

• Radiation Diagram (power-wise)
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Power Parameters: Radiation Intensity
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Omnidirectional (on Azimuth) Directive

Dipolo: typical on cellular terminals Yagi: typical for television receivers

Power Parameters: Isotropic Antenna

• Ideal point source that radiates uniformly in all 

directions
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Power Parameters: Isotropic Antenna
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),( ϕθi

Assuming the same transmitted power by both antennas…which focalizes better?

Same area 

under the curve

Power Parameters: Directivity (function of 
direction)

• Ratio between the power density flux an antenna 

radiates and the one an isotropic (omnidirectional) 

antenna would do, as a function of the radiating 

direction
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Power Parameters: Directivity

• Directivity is defined as the maximum value of the

Directivity function

– Because
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Power Parameters: Directivity

• When the Bean is narrow

• Conclusions

– Directivity provides information about how the radiated power 

is distributed with direction (elevation and azimuth)

– Directivity does not provide information about the actual 

transmited power
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Power Parameters: Gain Function

• Ratio between the power intensity radiated in a 

direction and the radiated intensity of an isotropic 

antenna, given a power available to the antenna

being Pin the power available at the antenna input
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Power Parameters: Gain

• Gain is the maximum value of the Gain Function

– Because it is a ratio, the units are dBs
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Power Parameters: Examples of Gain
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ANTENNA TYPE GAIN (dBi)

Isotropic 0,0

Ground Plane  1/4 wavelength 1,8

Dipole   1/2 wavelength 2,1

Monopole 5/8 wavelength 3,3

Yagui 2 elements 7,1

Yagui 3 elements 10,1

Yagui 4 elements 12,1

Yagui 5 elements 14,1

Power Parameters: Efficiency

• P
in

and Pr are related to each other around radiating 

Efficiency of the antenna
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Power Parameters: Efficiency

• From the above definition of Efficiency, the relationship 

between Gain and Directivity of an antenna can be 

derived

• Can the Gain of an antenna be increased by increasing 

the Directivity?

Telecommunication Systems Fundamentals

23

DG ⋅=η

Example

• A dipole of half wavelength without losses, with input 

impedanze of 73Ω is connected to a transmission line 

with characteristic impedance of 50Ω. Assuming the 

radiating intensity of the antenna is

Compute the Gain of the Antenna
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Example Answer
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Radiation Diagram

• Parameters to characterize the lobe structure

– Beamwidth

• Null to Null Beamwidth

• Half Power Beamwidth (HPBW) – 3dBs

• 10 dB Beamwidth

– Lobes

• Main lobe

• Side lobes

– First lobe

• Backlobe

– Forward-backward ratio
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Radiation Diagram: Classification

• Isotropic

• Omnidirectional

• Directive

• Multi-beam
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Polarization

• Of a Plane-wave, it refers to the 

spatial orientation of the time-

variation of the electric field

• Of an antenna, it refers to the 

polarization of the radiated field

– Generally speaking polarization is 

defined acording to the propagation 

direction
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Polarization

• Co-Polar and Cross-Polar components
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Antenna Bandwidth

• Frequency margin where the defined parameters for 

the antenna remain valid (impedance, beamwidth, 

sidelobes ratio, etc.)

– Narrowband Antennas (<10% central frequency)

– Broadband Antennas (>10% central frequency)
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Antenna Radiation on Free-Space Condition

• What is Free-Space condition: no obstacles or material 

to influence the radiation patern – not even the ground
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Radiation Zones

• When the distance is much greater than the 

wavelength, R>> λ, the observed wave behaves as a 

Plane-Wave.

• When can we consider we are “far enough”?
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R

rr′

Far-Field zone: rR ≈

Radiation Zones

• Simplifying but useful approach: three zones are defined:

– Near-Field: Rayleigh (spheric propagation)

– Intermediate-Field: Fresnel (interferences)

– Far-Field:   Fraunhofer
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Radiation Zones: Far-Field

• Conclusions:

– Power decreases as square of the distance

– Satisfy condition of Plane-Wave

• E and H fields are perpendicular

• Amplitude of E and H fields are related to each other through the 

transmission mean impedance

– The type of the transmitting antenna afects only on the angular 

variation of the transmitted power flux (Radiation Diagram)

– Transmission direction of the wave propagation coincides 

with line of sight of the transmitting antenna
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EIRP - Equivalent Isotropic Radiated Power

• The product of the antenna Gain by the available 

Power
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EIRP

• Its units are dBW (or dBm) 

• We will see later, this parameter (expressed on dBW) 

is quite usefull when computing the “availability” of the 

radio-link

• Example: if the Gain of an antenna is 2dBi and it gets a 

power of 10W, How much is its EIRP?
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Lineal Antennas

• Antennas built with thin electrically conductive wires 

(very small diameter compared to λ).

• They are used extensively in the MF, HF, VHF and 

UHF bands, and mobile communications.

• Among others:

– Dipole

– Monopole

– Yagi antenna

– Loops

– Helixes
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Lineal Antennas: Infinitesimal Dipole

• Formed by two short conductive wires simetrically 

feeded at its center, being l << λ.
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Lineal Antennas: Infinitesimal Dipole

• Computing the magnetic field form the electrical, 

calculating the power flux and integrating for all    we 

get 

– and consecuently

• What is the Gain of this antenna?

Telecommunication Systems Fundamentals

40

θ

rRI
Il

Z
2

0

2

0
0

3

2
Pr =







 ⋅








=

λ

π

2

280 







=

λ
π

l
Rr

2

3
=D



Lineal Antennas: Half-Wavelength Dipole

• Very common antenna, with a “convenient” radiation 

impedance of 73Ω
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Lineal Antennas: Half-Wavelength Dipole

• Radiation parameters
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Radiated Field over a Perfect Conductor

• Up to this point we have assumed the antennas are in 

the free-space environment. However they usually are 

close to the ground

• When the distance to ground is comparable to the 

wavelength, and the beamwidth is large, antenna 

radiation is heavily affected by the presence of the 

ground

• For these scenarios, we will assume the ground is a 

perfect conductor, infinite and plane
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Image Theory

• Intuitively, the field is reflected on the ground

– Perfect conductor: the transmitted wave is reflected

– The field P is the result of the sum of the direct and reflected 

waves

– Fiend P is the result of the primary and image waves in the 

equivalent free-space scenario

• Which is valid only for the upper half semi-space
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Image Theory

• Example: field produced by a Infinitesimal dipole
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Image Theory

• Example (cont.)

– If             then, directivity increases by 3dB! -> decrease the 

size 

– Otherwise….
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Monopole

• Vertical Dipole divided to its half, that is fed between 

wire end and a conductive plane
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• Applying Image theory, it can be proven that a 
monopole above a conductive plane exhibit the 
same behavior than a dipole with a length twice 
the height of the monopole
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Consider only z > 0  and h>>λ

Monopole

• Example: λ/4 monopole

– As shown before, the monopole exhibit the same 

performances than a λ/2 dipole and therefore its directivity is

• At low frequencies, this antenna has quite large 

physical dimensions

– Example: the standard AM transmitter for frequency carrier 

around 1MHz, corresponds to a wavelength of 300 m, and 

therefore this λ/4 monopole has a heigth of 75 m. 
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D = 5.15 dBi



Monopole
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Reception of an Electromagnetic Field

• If and electromagnetic wave, with a plan-wave like 

propagation, runs over a conductor (antenna) it 

generates a current distribution over it
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Plane Wave



Equivalent Circuit Model for a Receiving Antenna

• An antenna at reception is designed to optimize the 

power handed out at its terminal
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Reciprocity Theorem

• It allows to relate the properties of an antenna when 

receiving and transmitting

• “The relationship between an oscillating current and 

the resulting electric field is unchanged if one 

interchanges the points where the current is placed 

and where the field is measured”

– For the specific case of an electrical network, it is sometimes 

phrased as the statement that voltages and currents at 

different points in the network can be interchanged”
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Reciprocity Theorem

• Suppose an anechoic chamber (no echo) in which are 

placed two antennas, both can transmit and receive, 

and operating at the same frequency

• The roles of sending and receiving can exchanged. 

Thus, the radiation patterns of transmitting and 

receiving are the same
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Effective Aperture

• Effective Aperture of an antenna characterizes the 

electromagnetic energy that it is able to capture

• Intuitively a large antenna captures more power, as it 

has more area
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Effective Aperture

• Equivalent aperture is defined as

• The value does not have to match the dimensions 

(physical) of the antenna.

• When the antenna is flat, the physical relationship 

between the opening (Af) and the effective aperture 

(Aeff) is known as aperture efficiency, verifying that:
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Directivity vs Maximum Effective Aperture 

• The above solution is valid for any antenna. For an 

infinitesimal dipole it can be proof that
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Directivity vs Maximum Effective Aperture 

• In case of losses associated to the antenna, the 

maximum effective aperture is
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Polarization Mismatch

• The difference of polarization between transmitting and 

receiving antennas, it is known as Polarization Loss 

Factor
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Friis Transmission Equation

• For Isotropic antennas and free-space propagation

� The basic losses are
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Friis Transmission Equation

• For any pair of antennas and free-space propagation

� The basic losses are

Telecommunication Systems Fundamentals

62





=
antennaRx  in to handedpower :

antennaTx  in to handedpower :

dr

et

dr

et
tf

p

p

p

p
l

RxTx

bf

RxTxRx

Tx
tf

Tx
et

Rxeqdr

gg

l

gg

d

p

p
l

g
d

p

gsp

··

1
·

4

·
4

·
4

·· 2

2

2

=







==⇒










=

==

λ

π

π
φ

π

λ
φφ

)()()()( dBGdBGdBLdBL RxTxbftf −−=

2
4

·









=

λ

πd

ggp
p RxTxTx

Rx



Friis Transmission Equation

• Sumarizing, for any antenna
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Usual 

Notation

Definition

Antennas Mean

Free-Space Basic Loss Lbf Isotripic Free-Space

Basic Loss Lb Isotripic Any

Free-Space Transmission Loss Ltf Any Free-Space

Transmission Loss Lt Any Any
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Friis Transmission Equation
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Link Budget

• Link Budget = expression for available power at the 

receiver as a function of
– Transmitted Power

– Rx andTx Antenna Gains

– All the losses in the link

Telecommunication Systems Fundamentals

65
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Link Budget

• Other factors affecting the link

– Normalized Noise Power

• SNR

• Power-limited Systems

– Minimum Received Power (Sensibility) + Fading Margin

– The maximum distance between Tx and Rx is calculated by the 

Link Budget

– Interference
• C/I; SINR

• Interference-limited Systems

– Performances: BER, PER, Pout…
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Important Concepts in this Topic

• Poynting Vector

• Radiated Power Flux Density

• Antenna Directivity

• Antenna Gain

• Antenna Efficiency

• Antenna Effective Aperture

• Polarization

• Reciprocity Theorem

• Most common simple antennas

• Friis Equation and Link Budget

• Free-Space Basic Propagation Loss
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