ÁLGEBRA

Tema 4. APLICACIONES LINEALES.

Curso 2017 - 2018

José Juan Carreño Carreño

Departamento de **Matemática Aplicada**a las Tecnologías de la Información
y las Comunicaciones

Escuela Técnica Superior de Ingeniería de Sistemas Informáticos
Universidad Politécnica de Madrid

(ロ) (回) (国) (国) (国) (国) (Q(C)

Contenido¹

- Definición y propiedades.
- Expresión matricial.
 - Construcción de aplicaciones lineales.
- Aplicaciones lineales bajo cambios de base.
- Núcleo, imagen y rango de una aplicación lineal.
- Composición de aplicaciones lineales.
 - Inversa de una aplicación lineal bivectiva.

¹Del Tema 4 del libro de Álgebra: Aplicaciones a Teoría de Códigos, de Maite Foulquie, Jesús Garcia y Ana Lías.

Definición: Sean V y W dos espacios vectoriales sobre un cuerpo \mathbb{K} . Una aplicación $f: (V,+,\cdot_{\mathbb{K}}) \longrightarrow (W,+,\cdot_{\mathbb{K}})$ se dice que es una aplicación lineal de V en W, o bien un homomorfismo de espacios vectoriales sobre \mathbb{K} , si:

para todo $u, v \in V$.

para todo $a \in \mathbb{K}, u \in V$.

Ejemplos:

• La homotecia de razón α : $f_{\alpha}: V \longrightarrow V$ con $\alpha \in \mathbb{K}^*$ fijo

$$f_{\alpha}(v) = \alpha v$$

$$\forall v \in V$$
.

• La **Identidad** de V en V:

$$Id:V\longrightarrow V$$

$$Id(v) = v$$

$$\forall v \in V$$
.

• La **inclusión** de S en V, siendo S un subespacio vectorial de V:

$$i: S \longrightarrow V$$

$$i(v) = v$$

$$\forall v \in S$$
.

• El homomorfismo nulo:

$$c_0:V\longrightarrow W$$

$$c_0(v) = 0_W$$

$$\forall v \in V$$
.

Definición y propiedades. 3

Definiciones: Si f es una aplicación lineal de V en V diremos que f es un **endomorfismo**.

Si una aplicación lineal $f: V \longrightarrow W$ es biyectiva diremos que es un **isomorfismo** de V en W.

Ejemplos:

Propiedades: Sea $f: V \longrightarrow W$ una aplicación lineal entre espacios vectoriales sobre \mathbb{K} . Se verifica que:

Observación: Las propiedades anteriores son condiciones necesarias para que una aplicación sea lineal, es decir, si alguna propiedad NO se cumple entonces la aplicación NO es lineal.

Ejemplos:

Proposición: Sea $f: V \longrightarrow W$ una aplicación lineal y $B = \begin{bmatrix} u_1, u_2, \dots, u_n \end{bmatrix}$ una base de V. Si $v \in V$ y $v = x_1u_1 + x_2u_2 + \dots + x_nu_n$ entonces $f(v) = x_1f(u_1) + x_2f(u_2) + \dots + x_nf(u_n)$

Observación: Para conocer la imagen mediante una aplicación lineal $f: V \longrightarrow W$ basta con conocer las imágenes de los vectores de una base de V.

Definición y propiedades. 6

La observación anterior da lugar a dos resultados importantes:

- Toda aplicación lineal puede representarse mediante una expresión matricial.
- Se pueden construir aplicaciones lineales que verifiquen condiciones dadas.

Nota: Si de la expresión matricial se recupera la expresión explícita, entonces la aplicación es LINEAL.

Proposición: Sea $f: V \longrightarrow W$ una aplicación lineal y $B = \begin{bmatrix} u_1, u_2, \dots, u_n \end{bmatrix}$ y $B' = \begin{bmatrix} w_1, w_2, \dots, w_m \end{bmatrix}$ bases de V y W respectivamente.

Si las coordenadas de $v \in V$ y $f(v) \in W$ respecto de las bases son:

$$v = (x_1, x_2, ..., x_n)_B$$
 $y \quad f(v) = (y_1, y_2, ..., y_m)_{B'}$

y se tiene que:

$$f(u_1) = (a_{11}, a_{21}, \dots, a_{m1})_{B'}$$

$$f(u_2) = (a_{12}, a_{22}, \dots, a_{m2})_{B'}$$

$$\vdots$$

$$f(u_n) = (a_{1n}, a_{2n}, \dots, a_{mn})_{B'}$$

entonces

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}_{B'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{B}$$

Para establecer la relación que hay entre las coordenadas de v en base B y las de f(v) en B' es **suficiente con conocer las coordenadas de los vectores** $f(u_1), f(u_2), \ldots, f(u_n)$ respecto de B'.

Dem.:

Definición: En las mismas condiciones anteriores, se llama expresión matricial de f respecto de las bases B y B' a la expresión:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}_{B'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{B}$$

que abreviadamente: $Y_{B'} = M_f X_B$ tal que:

- X_B e $Y_{B'}$ representan las matrices columna de las coordenadas de v y f(v) en las bases B y B'.
- M_f se llama matriz de f respecto de las bases B y B', y sus columnas son las coordenadas de los vectores $f(u_1), f(u_2), \ldots, f(u_n)$ respecto de B'.

Observaciones:

- Fijadas las bases B y B', la matriz M_f asociada a f es única, debido a la unicidad de las coordenadas.
- Si f es un endomorfismo la matriz M_f de cualquiera de sus expresiones matriciales es cuadrada. Además, se podría elegir la misma base B en el espacio inicial y en el final, quedando:

$$Y_B = M_f X_B$$

Observaciones:

- A partir de las expresiones matriciales obtenidas se recuperan las expresiones explícitas de partida.
- Esto caracteriza a las aplicaciones lineales.

Teorema: (existencia de aplicaciones lineales con condiciones)

Sean V y W espacios vectoriales y $B = \begin{bmatrix} u_1, u_2, \dots, u_n \end{bmatrix}$ una base de V.

Si $t_1, t_2, ..., t_n$ son vectores de W entonces existe una única aplicación lineal $f: V \longrightarrow W$ tal que

$$f(u_i) = t_i \quad \forall i = 1, \dots, n$$

Es decir, fijados vectores cualesquiera de W como imágenes para los vectores de una base B existe una única aplicación lineal que cumpla esas condiciones.

Dem.: Si las coordenadas de los vectores t_i respecto de una base

$$B' = \begin{bmatrix} w_1, w_2, \dots, w_m \end{bmatrix}$$
 de W son:
 $t_1 = (a_{11}, a_{21}, \dots, a_{m1})_{B'}$
 $t_2 = (a_{12}, a_{22}, \dots, a_{m2})_{B'}$
 \vdots
 $t_n = (a_{1n}, a_{2n}, \dots, a_{mn})_{B'}$

la expresión matricial de f respecto de B y B' es:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}_{B'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{B}$$

Construcción de aplicaciones lineales.

3

Teorema: Sean $f: V \longrightarrow W$ una aplicación lineal, B_1 y B_2 dos bases de V y B_1' y B_2' dos bases de W tales que las expresiones matriciales de los cambios de base de B_2 a B_1 y de B_2' a B_1' son:

$$Z_{B_1} = P \cdot Z_{B_2}$$
 $y Z_{B'_1} = Q \cdot Z_{B'_2}$

Si la expresión matricial de f respecto de B_1 y B_1' es $Y_{B_1'} = M_f X_{B_1}$ entonces su expresión matricial respecto de B_2 y B_2' es:

$$Y_{B_2'} = (Q^{-1} M_f P) X_{B_2}$$

Ejemplos:

◄□▶◀圖▶◀불▶◀불▶ 불
• 의

Observación: Sea B una base de V y $f: V \longrightarrow V$ un endomorfismo de V cuya expresión matricial respecto de B es: $Y_B = M_f X_B$.

Si B' es otra base de V tal que las expresiones matriciales de los cambios de base de B' a B y B a B' son respectivamente:

$$Z_B = P \cdot Z_{B'}$$
 y $Z_{B'} = Q \cdot Z_B$

entonces la expresión matricial de f respecto de B' se puede obtener utilizando cualquiera de ellos como sigue:

$$Y_{B'} = (P^{-1}M_f P)X_{B'}$$
 o bien $Y_{B'} = (QM_f Q^{-1})X_{B'}$

Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} y S un subespacio de V.

Definición: La imagen de S es el subconjunto de W:

$$f(S) = \left\{ f(v) / v \in S \right\} \subseteq W$$

Proposición: Si S es un subespacio de V

 $\implies f(S)$ es un subespacio de W.

Además, si $\begin{bmatrix} u_1, \dots, u_r \end{bmatrix}$ es una base de $S \implies$

 \implies $\{f(u_1), \dots, f(u_r)\}$ es sistema de generadores de f(S),

es decir: $f(S) = L(f(u_1), \dots, f(u_r))$

Por tanto,

 $\dim f(S) \leq \dim S$

Definición: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} .

Se define el **conjunto imagen de** f, y se denota $\operatorname{Im}(f)$, como el conjunto imagen del subespacio impropio V, es decir:

$$\operatorname{Im}(f) = f(V) = \left\{ f(v) / v \in V \right\} \subseteq W$$

Por tanto, Im(f) es un subespacio de W y

$$\dim \operatorname{Im}(f) \leq \dim W$$

Proposición: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} .

• Si $B = [u_1, ..., u_n]$ es una base de V entonces:

$$Im(f) = L(f(u_1), \ldots, f(u_n))$$

es decir, $\left\{f(u_1),\ldots,f(u_n)\right\}$ es sistema de generadores de $\operatorname{Im}(f)$ y, por tanto,

 $\dim \operatorname{Im}(f) \le \dim V$

② Si $Y_{B'} = M_f X_B$, es la expresión matricial de f respecto de las bases B y B' de V y W respectivamente se tiene que

$$\dim \operatorname{Im}(f) = rg(M_f)$$

Observación: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} se verifica que:

- Si $\dim W > \dim V$ entonces f NO es sobreyectiva.
- ¿Y si $\dim V > \dim W$ es necesariamente sobreyectiva?

Sea $f: V \longrightarrow W$ una aplicación lineal entre dos Definición: espacios vectoriales sobre K.

Llamamos núcleo de la aplicación f, y se denota $\ker(f)$, como el conjunto:

$$\ker(f) \;=\; \left\{ v \in V \; / \; f(v) \;=\; 0_{\mathit{W}} \right\} \;\subseteq V$$

Ejemplos:

Proposición: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} , B y B' bases de V y W respectivamente, tales que la expresión matricial de f respecto de ellas es $Y_{B'} = M_f X_B$. Se verifica:

- \bullet $\ker(f)$ es un subespacio vectorial de V.
- ② El sistema lineal homogéneo $M_f X_B = 0$ proporciona unas ecuaciones implícitas de $\ker(f)$. Luego:
 - $rg(M_f) = n^o$ de ec. implícitas independientes
 - $\bullet \quad \dim \ker(f) = \dim V rg(M_f)$
- $\dim V = \dim \ker(f) + \dim \operatorname{Im}(f)$
- $\operatorname{dim} S = \operatorname{dim}(S \cap \ker(f)) + \operatorname{dim} f(S)$ siendo $S \subseteq V$ sub. v.

Observación:

Si $f: V \longrightarrow W$ es una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} se verifica que:

- Si $\dim V > \dim W$ entonces f NO es inyectiva.
- $\xi Y \operatorname{si} = \dim V < \dim W$ es necesariamente inyectiva?

Proposición:

Sea $f: V \longrightarrow W$ una aplicación lineal inyectiva. Entonces se verifica:

1 Si $\{u_1, \ldots, u_r\}$ es libre entonces

$$\{f(u_1),\ldots,f(u_r)\}$$
 es libre.

Para todo subespacio S de V:

$$\dim f(S) = \dim S$$

Proposición: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} . Entonces se verifica:

Siendo M_f la matriz de una de las expresiones matriciales de f.

Observación: Si $f: V \longrightarrow W$ es una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} se verifica:

- Si $\dim V \neq \dim W$ entonces f NO es biyectiva.
- $\xi Y \operatorname{si} \quad \operatorname{dim} V = \operatorname{dim} W$ es necesariamente biyectiva?

Teorema: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} , tales que $\dim V = \dim W$. Se verifica:

- **1** f es biyectiva \iff f es inyectiva \iff $\ker(f) = \{0_V\}.$
- 2 f es biyectiva \iff f es sobrevectiva \iff $\operatorname{Im}(f) = W$.

Teorema: Sea $f: V \longrightarrow W$ una aplicación lineal entre dos espacios vectoriales sobre \mathbb{K} , con $\dim V = n$ y $\dim W = m$. Se verifica:

- \bigcirc Si n < m entonces f NO es sobreyectiva.
- ② Si n > m entonces f NO es inyectiva.
- Si $n \neq m$ entonces f NO es biyectiva.

Composición de aplicaciones lineales.

Teorema: Sean B_1 , B_2 y B_3 bases de los espacios vectoriales V, W y U respectivamente.

Si $f: V \longrightarrow W$ y $g: W \longrightarrow U$ son aplicaciones lineales entonces $g \circ f$ también lo es.

Además, si las expresiones matriciales de f y g respecto de las bases B_1, B_2 y B_3 son:

$$Y_{B_2} = M_f X_{B_1}$$
 e $Y_{B_3} = M_g X_{B_2}$

Y la expresión matricial de $g \circ f$ respecto de las bases B_1 y B_3 es:

$$Y_{B_3} = M_g M_f X_{B_1}$$

Inversa de una aplicación lineal biyectiva.

Teorema: Si $f: V \longrightarrow W$ es una aplicación lineal biyectiva entonces $f^{-1}: W \longrightarrow V$ también lo es.

Si la expresión matricial de f respecto de las bases B_1 y B_2 , de V y W, respectivamente, es:

$$Y_{B_2} = M_f X_{B_1}$$

Entonces la expresión matricial de f^{-1} respecto de las bases B_2 y B_1 es:

$$Y_{B_1} = M_f^{-1} X_{B_2}$$

