Notas de resolución Termodinámica Química 2º Grado en Química UNED **Examen de Febrero 1S-N** Luis M. Sesé (Coordinador)

P.1

Eq. (5.3), pp.122 ó equivalentemente $dU \le TdS - PdV + \sum_{j} X_{j} dY_{j}$ (signo igual para procesos reversibles). Símbolos definidos en el texto.

P.2

De la correspondiente expresión diferencial de la energía interna para un sistema en el que sólo hay trabajos de compresión-expansión y químicos

$$dU = TdS - PdV + \sum_{j} \mu_{j} dn_{j}$$

se deducen el resto de las expresiones diferenciales necesarias

$$dF = -SdT - PdV + \sum_{j} \mu_{j} dn_{j}$$

$$dG = -SdT + VdP + \sum_{j} \mu_{j} dn_{j}$$

$$dH = TdS + VdP + \sum_{j} \mu_{j} dn_{j}$$

y es inmediato deducir que

$$\mu_{j} = \left(\frac{\partial U}{\partial n_{j}}\right)_{S,V,n_{k\neq j}} = \left(\frac{\partial F}{\partial n_{j}}\right)_{T,V,n_{k\neq j}} = \left(\frac{\partial G}{\partial n_{j}}\right)_{T,P,n_{k\neq j}} = \left(\frac{\partial H}{\partial n_{j}}\right)_{S,P,n_{k\neq j}}$$
(Caps 5 y.7)

P.3

En las condiciones del problema: $C_P - C_V = \frac{TV\alpha^2}{\kappa_T} \rightarrow C_P \approx C_V$ y se pueden despreciar

las pequeñas diferencias entre ambos.

$$dS = \frac{C_V}{T}dT \approx \frac{C_P}{T}dT \to \Delta S \approx \int_{1}^{8} \frac{4.93 \times 10^{-4} T^3}{T} dT = 0.08397 J/(mol.K)$$
(Caps. 3 y 4)

P.4

U, F y G son funciones de estado. Las variaciones pedidas sólo dependen de los estados inicial y final y se pueden determinar si es necesario utilizando una transformación reversible que conecte ambos. En este caso (de gas ideal) es directo obtener que $\Delta F = \Delta G = -T\Delta S$

pues la energía interna U=U(T) únicamente, y la transformación útil aquí entre estados es una isoterma (400 K) $\rightarrow \Delta U = \Delta H = 0$.

Por ejemplo, con las variables T y V, las variaciones $i \rightarrow f$ de entropía y de las energías libres se calculan como

$$dS = \frac{C_V}{T}dT + \frac{R}{V}dV \rightarrow \Delta S = \int_i^f \frac{R}{V}dV = R \ln\left(\frac{V_f}{V_i}\right) = R \ln\left(\frac{P_i}{P_f}\right) = R \ln 5$$

$$\Delta F = \Delta G = -400R \ln 5 = -5352,6686 J / mol$$
(Caps. 3 y 4)

$$\Delta S_m = -R \sum_j n_j \ln x_j; \quad \Delta G_m = -T \Delta S_m$$

$$\Delta S_m = -8,3145 \left(8 \ln \frac{16}{21} + 2 \ln \frac{4}{21} + 0,5 \ln \frac{1}{21} \right) = 58,31945861J/K$$

$$\Delta G_m = -313,15 \times 58,31945861 = -18262,7385J$$
(Cap. 7)

P.6 Este sistema NO es ideal.

A)

a.1)
$$F = U - TS = -28878 J / mol$$
; $G = H - TS = -26480 J / mol$

a.2)

B)

Hay que determinar las relaciones lineales para los calores específicos en función de la temperatura absoluta (recta que pasa por dos puntos).

Presión constante

$$dS = \frac{C_P}{T}dT; \quad C_P = \frac{3537}{100} - \frac{7}{200}T$$

$$\Delta S = \int_{300}^{310} \frac{1}{T} \left(\frac{3537}{100} - \frac{7T}{200}\right) dT = 0,8098 J / (mol.K)$$

Volumen constante*:

$$dS = \frac{C_V}{T}dT; \quad C_V = \frac{139}{10} - \frac{3}{1000}T$$

$$\Delta S = \int_{300}^{310} \frac{1}{T} \left(\frac{139}{10} - \frac{3T}{1000}\right) dT = 0,4258 J / (mol.K)$$

El proceso a presión constante presenta una mayor variación de entropía y en una cantidad de +0.3840 J/(mol.K).

(Similar a problema propuesto en la PEC).

* Este problema no da los datos de densidad/volumen del estado a T = 310 K porque son de hecho muy próximos a los de T = 300 K, y con los datos disponibles para Cv la estimación para el problema a V=cte puede obtenerse como se ha hecho. La situación cambiaría de manera radical si esa "casi constancia" no lo fuera.

P.7

A) Fórmulas en pp. 227 y 228

$$\left|\Delta T_f\right| = k_{c,m} m = \frac{RT_f^2 M_1}{1000 \Delta H_f} \times \frac{g_2 / M_2}{g_1 / 1000} \rightarrow g_2 / M_2 = \frac{6009,48 \times 1000 \times 4,5}{8,3145 \times 273,15^2 \times 18,016} = 2,41964965 mol$$

Glicerina: $g_2 = 222,8255 g$; etanol: $g_2 = 111,4733 g$; 1-propanol: $g_2 = 145,4451 g$ (Cap. 9)

Sester Dept. C.C. S. F. F. F. Sicoutifricas, J. M. Sester Dept. B) Eqs. 10.31 ó 10.33 del texto, p.250, especificando que son a P y T constantes.