Memoria virtual

E. Campo M. Knoblauch Ó. López J. Clemente

Departamento de Automática Universidad de Alcalá

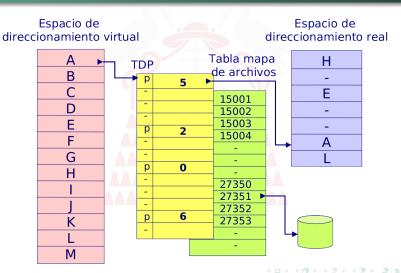
Índice

- Introducción a la memoria virtual (MV)
 - ¿Qué es la MV?
 - Ventajas de la MV
- Conceptos relacionados con la MV
 - Requisitos hardware de la MV
 - Carga dinámica
 - Paginadores
 - Hiperpaginación
- 3 Algoritmos de gestión de la MV
 - Algoritmos de gestión de memoria
 - Políticas de asignación
 - Políticas de ubicación
 - Políticas de búsqueda o de lectura
 - Políticas de reemplazo
 - Casos de estudio
 - Mach 3.0
 - Windows
 - Linux

¿Qué es la MV?

- Es un esquema de gestión de memoria en el que los procesos:
 - Se ejecutan sin estar completamente cargados en memoria principal (MP)
 - Pueden tener mayor tamaño que la MP disponible
- Permite un desacoplamiento entre el espacio de direcciones físicas y el espacio de direcciones virtual
- Utiliza el almacenamiento secundario como extensión de la MP
- Basada en el principio de localidad de las referencias ⇒ Sólo se mantiene en MP la información necesaria en cada momento
- El control lo realiza el sistema operativo (SO) con la ayuda imprescindible del hardware

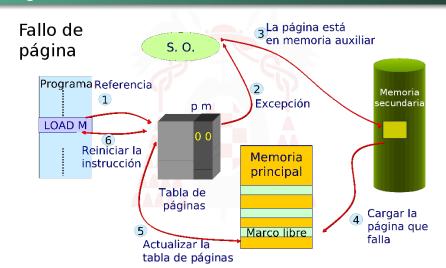
Ventajas de la MV


- Transparencia en las transferencias, dispositivo de almacenamiento

 MP
- 2 El tamaño de los procesos depende del espacio de direccionamiento virtual y del disco duro
- Se mejora el rendimiento del sistema ⇒ se incrementa el grado de multiprogramación
- Reduce la $E/S \Rightarrow$ sólo se cargan en MP las partes necesarias de un programa

Requisitos hardware de la MV

- Se utilizan mecanismos de paginación y segmentación
- Ventaja de la paginación;
 - Transferencias más simples con bloques de tamaño fijo Disco
 ⇔ MP
- Hardware de paginación:
 - Unidad de gestión de la tabla del mapa de páginas
 - Bits en los descriptores de páginas de: presencia, modificación (dirty bit) y referencia
 - Almacenamiento auxiliar para las páginas del proceso
 - Soporte para interrumpir instrucciones


Requisitos hardware de la MV

Carga dinámica

- Transferencia de páginas de dispositivo de almacenamiento a MP
- Si la página referenciada no está disponible en MP ⇒ Fallo de página (FP)
 - La tasa de fallos de página disminuye al aumentar el número de marcos
- Los tiempos que más afectan a la carga dinámica son:
 - Cambios de contexto
 - Guardar una página modificada en disco (page out)
 - Cargar una página referenciada en MP (page in)
- Mientras se realiza, el proceso está bloqueado

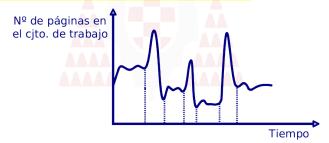
Carga dinámica

Paginadores

- Parte del SO que mueve páginas entre disco y MP
- Rutinas para hacer la transferencia cuando se produce un FP
- Se crean y destruyen con el objeto proyectado en MV
- Tipos de paginadores
 - De archivos
 - P.ej.: mmap, exec
 - De objetos anónimos o swap pager
 Aquellos que no tienen una imagen en el sistema de archivos
 - Gestión del área de swap
 (área de memoria persistente para los objetos anónimos)
 - De dispositivos
 - P.ej.: gestión del frame buffer
 - Se proyecta la zona de memoria utilizada por el dispositivo (no en el disco)

Hiperpaginación, vapuleo o thrashing

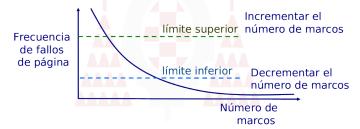
- Caída de rendimiento al aumentar el grado de multiprogramación
- Cuando los procesos intercambian páginas disco ⇔ MP



- Soluciones:
 - Reducir grado de multiprogramación
 - Utilizar un algoritmo de reemplazo local
 - Suministrar a cada proceso el número de marcos que necesite
 - Modelo del conjunto de trabajo
 - Frecuencia de fallos de página

Soluciones a la hiperpaginación

Modelo del conjunto de trabajo


- Conjunto de páginas referenciadas por el proceso durante un intervalo de tiempo
- Basado en principio de localidad de referencias
- Mantiene alto el grado de multiprogramación.

Soluciones a la hiperpaginación

Frecuencia de fallos de página

 Se establece un umbral superior y otro inferior, para quitar o asignar marcos de página a un proceso

Algoritmos de gestión de memoria (i)

- Objetivo ⇒ Minimizar el porcentaje de FPs, con mínima sobrecarga y máximo aprovechamiento de la MP
- Políticas de asignación ¿Qué cantidad de MP se asigna a un determinado proceso?
 - Asignación fija y asignación variable
 - Alcance del reemplazo: global y local
 - Gestión del espacio libre
- Políticas de ubicación ¿Dónde se ubica un bloque en MP?
- Políticas de búsqueda o lectura ¿Cuándo y qué páginas se cargan en MP?
 - Paginación por demanda
 - Paginación anticipada o prepaginación

Algoritmos de gestión de memoria (ii)

- Políticas de reemplazo ¿Qué páginas deben sustituirse en MP?
 - Algoritmo óptimo
 - Algoritmo primera página en llegar/primera en salir First In-First Out (FIFO)
 - Algoritmo página menos usada recientemente Least Recently Used (LRU)
 - Algoritmos de aproximación al LRU: reloj global, FIFO segunda oportunidad, página no usada frecuentemente - Not Frequently Used(NFU)

Políticas de asignación (i)

- Determinan qué cantidad de MP se asigna a un proceso según sus necesidades
- Asignación fija
 El número de marcos se decide en la carga inicial y está determinado por el tipo de proceso
- Asignación variable El número de marcos cambia a lo largo de la vida de un proceso
 - Modelo del conjunto de trabajo
 - Frecuencia de FPs

Políticas de reemplazo

Políticas de asignación (ii)

- Alcance del reemplazo
 - Global: Considera todos los marcos de MP como candidatos, independientemente del proceso al que pertenezcan
 - Ventaja: Mejor aprovechamiento de la MP
 - Inconveniente: Hiperpaginación
 - Ejemplo: Unix
 - Local: Considera los marcos del proceso que originó el FP
 - Ventaja: El número de FPs es más determinista
 - Inconveniente: Mayor sobrecarga ⇒ Cálculo de los marcos a asignar en cada instante
 - Ejemplos: VMS y Windows

Políticas de búsqueda o de lectura

Políticas de asignación (iii)

- Gestión del espacio libre
 - El SO mantiene el estado de los marcos libres o asignados
 - Mapa de bits
 - Listas enlazadas (Windows)
 - Sistema de colegas o buddy (Linux, Unix)

								Bloques libres
Inicial	1024							1
P1 pide 70	P1	128		256		Kb	512	3
P2 pide 35	P1	P2 6	64	256			512	3
P3 pide 80	P1	P2 6	54	Р3	128		512	3
Devuelve P1	128	P2 6	54	Р3	128		512	4
P4 pide 60	128	P2	Ρ4	Р3	128		512	3
Devuelve P2	128	64	Ρ4	Р3	128		512	4
Devuelve P4	256			Р3	128		512	3
Devuelve P3	1024							1

Políticas de ubicación

- Determinan dónde se ubica un bloque en MP
- Segmentación pura
 - Primer ajuste
 - Siguiente ajuste
 - Mejor ajuste
 - Peor ajuste
- Paginación
 - Carece de importancia

Algoritmos de gestion de memoria Políticas de asignación Políticas de ubicación Políticas de búsqueda o de lectura

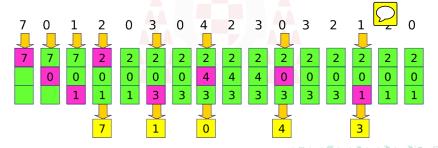
Políticas de búsqueda o de lectura

- Determinan cuándo y qué páginas se cargan en MP
- Paginación por demanda
 Sólo se carga en MP cuando se ha referenciado
 - Ventajas
 - En MP sólo hay lo que se necesita
 - La sobrecarga es mínima
- Paginación anticipada o prepaginación Se cargan en MP según una predicción
 - Ventajas
 - Si la predicción es buena, el tiempo de ejecución de los procesos se reduce
 - Útil cuando se accede secuencialmente a dispositivos de almacenamiento

Políticas de reemplazo

Políticas de reemplazo

- Deciden qué páginas deben sustituirse en MP
- Criterios
 - Baja sobrecarga
 - Sin ajustes en máquinas con distintas configuraciones (no tuning)
 - Aproximación al LRU
- Cadena de referencias
 - Lista de referencias a páginas para evaluar la calidad de estos algoritmos
 - Se eliminan los accesos contiguos a la misma página
 - Obtención
 - Artificialmente, de forma pseudoaleatoria
 - A partir de una traza de ejecución

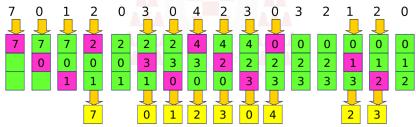

Políticas de búsqueda o de lectura

Políticas de reemplazo

Políticas de reemplazo

Algoritmo óptimo

- Se reemplaza la página que va a tardar más tiempo en usarse
- Ventaja: Ofrece la tasa de fallos más baja posible
 Establece un criterio de evaluación del resto de algoritmos
- Inconveniente: No implementable

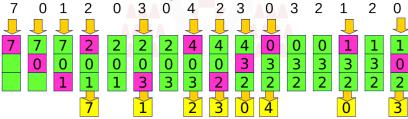

lgoritmos de gestión de memoria olíticas de asignación

Políticas de búsqueda o de lec

Políticas de reemplazo

Algoritmo FIFO

- Se reemplaza la página que lleva más tiempo cargada en MP
- Ventaja: Sencillo de implementar
- Inconvenientes
 - Bajo rendimiento
 - Anomalía de Belady ⇒ Incremento FPs al aumentar nº marcos
 Ejemplo: Calcular FPs en 1 2 3 4 1 2 5 1 2 3 4 5 con 3 y 4 marcos



Políticas de reemplazo

Políticas de reemplazo

Algoritmo LRU

- Aproximación al algoritmo óptimo. Utiliza el pasado reciente para predecir el futuro
- Sustituye la página menos usada en el pasado
- Inconvenientes
 - Dificultad de implementación
 - Alta sobrecarga
 - Solución: Utilizar algoritmos de aproximación al LRU

Algoritmos de gestión de memoria Políticas de asignación Políticas de ubicación Políticas de búsqueda o de lectura

Políticas de reemplazo

Políticas de reemplazo

Algoritmos de aproximación al LRU - Reloj global

- Se crea una lista circular y se emplea un bit R asociado a cada página
 - Mientras la lista no esté llena, cargar páginas con bit de referencia (R) igual a 0
 - Si se referencia una página, se pone bit R = 1
 - \odot Cada cierto periodo, con un puntero giratorio poner bits R=0
 - Si la lista está llena:
 - Si bit R = 0, reemplazar página y avanzar puntero
 - Si bit R = 1, poner bit R = 0 y avanzar el puntero
- Ejemplo: 4.3 BSD

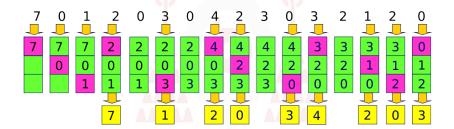
Políticas de reemplazo

Políticas de reemplazo

Algoritmos de aproximación al LRU - FIFO con 2ª oportunidad

- Se emplea un bit R asociado a cada página
 - Elegir una página con criterio FIFO
 - Si R = 1, poner R = 0
 - Si R = 0, sustituir la página
 - Avanzar puntero e ir a 1
- Generalmente se implementa con una cola FIFO circular
- Ventaja: Baja sobrecarga
- Inconveniente: Puede degenerar en un FIFO si todas la páginas tienen R=1

lgoritmos de gestión de memoria olíticas de asignación


Políticas de ubicación

Políticas de búsqueda o de lectura

Políticas de reemplazo

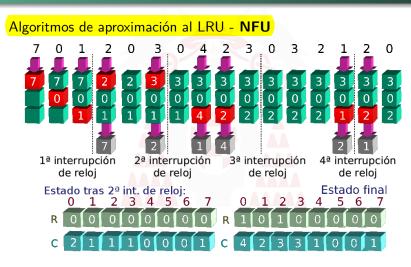
Políticas de reemplazo

Algoritmos de aproximación al LRU - FIFO con 2ª oportunidad

Algoritmos de gestión de memoria Políticas de asignación Políticas de buiscación Políticas de busqueda o de lectura Políticas de reemplazo

Políticas de reemplazo

Algoritmos de aproximación al LRU - **NFU**


- Se controla la interrupción de un reloj y se emplea un contador y un bit R asociado a cada página
 - Por cada interrupción del reloj
 - Si R = 1, incrementar el contador
 - Poner todos los bits R a 0
 - Por cada FP, se reemplaza la página con el menor valor en el contador
- Inconveniente: Si una página se usó mucho, no se reemplazará aunque ya no se acceda a ella
- Solución: Emplear mecanismos que envejezcan los contadores.
 En vez de incrementarlos
 - Desplazar el contador 1 bit a la derecha
 - Añadir bit de ref. en el extremo izquierdo del contador

lgoritmos de gestión de memoria olíticas de asignación

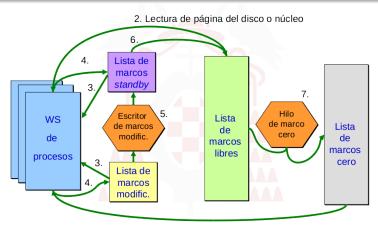
Políticas de asignación Políticas de ubicación

Políticas de búsqueda o de lectura

Políticas de reemplazo

Mach 3.0

- Aproximación al LRU con FIFO segunda oportunidad
- Utiliza tres colas de páginas
 - Cola de páginas libres, puestas a 0. Se reemplazan cada vez que hay un FP
 - Cola de páginas activas. Mantienen el conjunto de trabajo
 - Cola de páginas inactivas, Buffer de páginas no referenciadas
- El demonio pageout libera páginas, moviéndolas de la cola de activas a la de inactivas cuando el número de páginas libres cae por debajo de un umbral

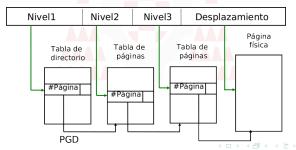

W2K

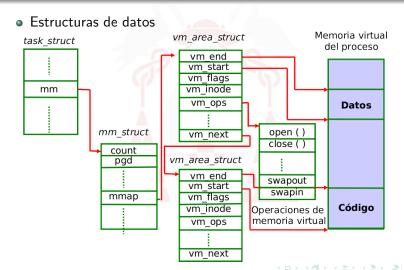
- Mecanismo de clustering
 - Si hay FP, realiza paginación bajo demanda trayendo varias páginas contiguas
 - Depende de la cantidad de MP y tipo de objeto que produjo el FP
 - En sistemas de sobremesa el valor del clustering es 8 marcos para código, 4 para datos y 8 para el resto
- Gestión del conjunto de trabajo (WS) ⇒ Número de páginas cargadas en MP del proceso en ejecución
 - Asignación variable de número de marcos y alcance local
 - Al iniciar un proceso se asigna un tamaño mínimo del WS
 - El tamaño de los WS varía dinámicamente entre 50 y 345 páginas
 - Reajusta el WS de los procesos y decide qué cantidad de páginas se pueden liberar
 - Incrementa el tamaño del WS si el proceso genera FPs

W2K

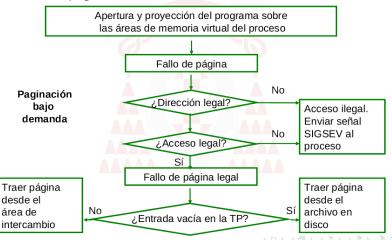
- Estado de los marcos
 - Erróneo Con daños físicos
 - Libre Sin asignar, pero no puede asignarse hasta poner a 0s
 - Vacío Iniciado a 0s
 - Activo Presente en un WS o bloqueado en memoria
 - Transición Está actualizándose con información del disco
 - Reposo Ha dejado de pertenecer a un WS, pero contiene información y está apuntado desde la TMP
 - Modificado La información que contiene no se ha salvado en disco
 - Modificado sin escritura Es necesario esperar para actualizar su información en disco

W2K

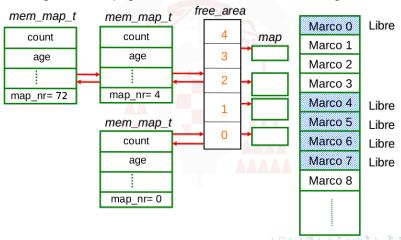



1. Fallo de página cero

Lista de marcos erróneos

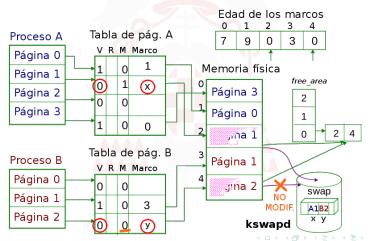


- Direccionamiento de la memoria virtual
 - Tabla de páginas con tres niveles y cuatro campos: directorio de páginas, directorio intermedio, tabla de páginas y desplazamiento
 - Cada tabla de páginas ocupa 1 página
 - Diseñada para Alpha 64 bits. Se adapta a x86 (32 bits) definiendo tamaño del directorio intermedio = 1



Fallo de páginas

Asignación de páginas utilizando el sistema de colegas


- Algoritmo de reemplazo
 - Alcance del reemplazo global
 - La gestión del área de intercambio se realiza con el demonio kswapd
 - Cada segundo comprueba el número de marcos libres y busca los que pueden ser reemplazados
 - Es un algoritmo de aproximación al LRU con envejecimiento
 - Basado en la edad de las páginas

- Algoritmo de reemplazo
 - Técnica de envejecimiento de páginas
 - Todas las páginas se inician con edad 3
 - Si se accede a una página, R = 1, se incrementa en 3 la edad de la página, hasta un máximo de 20
 - Si se ejecuta kswapd, se decrementa en 1 la edad de la páginas que no se usan (bit R = 0)
 - Si una página modificada se lleva a disco
 - Se marca como inválida la entrada en la TMP
 - Se incluye la información para su recuperación posterior
 - Se libera el marco, añadiéndolo a lista de marcos libres
 - Las páginas no modificadas se marcan como libres y sus marcos se añaden a la lista de marcos libres
 - Si se recuperan suficientes marcos para el proceso, el demonio dormirá de nuevo
 - Si no, se continúa con el siguiente proceso

Algoritmo de reemplazo

Algoritmo de reemplazo

Referencias bibliográficas

- [Sánchez, 2005] S. Sánchez Prieto. Sistemas Operativos. Servicio de Publicaciones de la UA, 2005.
- [Stallings, 1999] W. Stallings.
 Organización y arquitectura de Computadores.
 Ed. Prentice Hall, 1999.
- [Silberschatz, 2006] A. Silberschatz, P. B. Galván y G. Gagne Fundamentos de Sistemas Operativos. McGraw Hill. 2006
- [Tanenbaum, 2009] A. Tanenbaum. Sistemas Operativos Modernos. Ed. Pearson Education, 2009.

