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Concepts in this Chapter

• Review of Signals models and classification
– Examples of actual signals 

– Signal modeling

– Signals classification

• Review of Statistical Basics: Modeling of Stochastic Processes 
– Amplitude distribution (probability density function, pdf) and averages

– Autocorrelation

– Independence– Independence

– Stationarity

– Ergodicity

– Cross-correlation

– Power and Energy Spectral Density
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Theory classes: 3 sessions (6 hours)

Problems resolution: 1 session (2 hours)

Lab (Matlab): 2 hours
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Why modeling Signals?

• To answer the following questions:

– What information does the signal contain? How is the info 
coded into the signal? How much info does the signal contain?

– How does the channel affect the transmitted signal?

– How is the telecommunication system designed?– How is the telecommunication system designed?

• We describe signals by their mathematical model –

measurable characteristics of the signal
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How would you describe them?

Telecommunication Systems Fundamentals



Signal Modeling

• In a point-by-point description, the value of the signal at each time 
instant is stored in a look-up-table

t x(t)

… …

0 7

• The point-by-point description is valid for any signal (assuming the 
sampling rate is fast enough) and contains all the information 
within the signal, but “seeing” the information is not evident

0 7

1 2

… …
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Signal Modeling

• Some signals can be modeled by a mathematical expression that 
provides its amplitude as function of time

    
x(t) = An

n =0

∞

∑ cos(nω0t)

• This type of signals are named “Deterministic” because their lack 
of randomness

– Only few signals in telecommunications systems can be modeled as simple as 

this
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Signal Modeling

• We can briefly describe a signal by some of its characteristics

– Mean value

– Mean squared value (power)

– Energy

– Standard deviation

– Autocorrelation 

– …– …

• It is a universal procedure (usable for any kind of signal), and it 
gives some criteria to classify signals. However, it does not 
describe the signal completely (univocally). 
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How would you describe them?
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Mean Value

• For time-discrete signals, mean value is defined as:

• For time-continuous signals, mean value is defined as:

x[n] = lim
N →∞

1

2N +1
x[n]

n=−N

N

∑

• For time-continuous signals, mean value is defined as:

x(t) = lim
T →∞

1

2T
x(t)dt

−T

T

∫
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Mean Value
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Energy

• A decisive classification of signals is related to its 

energy and power: finite energy, or power defined. For 

finite energy signals, it is defined

– For discrete signals:

E
x

= x[n]
2

∞

∑

– For continuous signals:

E
x

= x(t)
2
dt

−∞

∞

∫

E
x

= x[n]
n=−∞

∑
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Energy
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Average Power

• The average power of discrete signals is defined as:

• While the average power of continuous signal is 

P
x

= lim
N →∞

1

2N +1
x[n]

2

n=−N

N

∑

• While the average power of continuous signal is 

defined as:

P
x

= lim
T →∞

1

2T
x(t)

2
dt

−T

T

∫
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Average Power
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A signal classification

Signal

Finite

Energy

Finite

Average
Unbounded 

AverageEnergy

(Energy Defined)

Average

Power

(Power Defined)

Average

Power

0 ≤ E
x

< ∞

P
x

= 0

E
x

= ∞

0 < P
x

< ∞

E
x

= ∞

P
x

= ∞
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Energy/Power signal classification
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Energy/Power signal classification
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Homework

• Compute: i) Average Value; ii) Energy and ii) Average Power of 
the two following signals:

x (t) = Ae
j 2πft

x1(t) = Acos(2πft)

x2(t) = Ae
j 2πft
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Classifying Signals: A Taxonomy

� Continuous / Discrete

� Analog / Digital

� Deterministic / Stochastic (random signals)

� Deterministic: 

� Energy Defined (time limited)

� Power Defined

� Periodic / Non periodic� Periodic / Non periodic

� Stochastic

� Stationary 

� Ergodic / Non-Ergodic

� Non-Stationary

� Other classifications

� Real valued / Complex

� Even / Odd

� Hermitical / Non-Hermitical

23
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Concepts in this Chapter

• Review of Signals models and classification
– Examples of actual signals 

– Signal modeling

– Signals classification

• Review of Statistical Basics: Modeling of Stochastic Processes 
– Amplitude distribution (probability density function, pdf) and averages

– Autocorrelation

– Independence– Independence

– Stationarity

– Ergodicity

– Cross-correlation

– Power and Energy Spectral Density
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Recall: Time Averaging and Expected Value

  
x(t) = lim

T → ∞

1

2T
x(t)dt

−T

T

∫

  
E(X) = xfX (x)dx

−∞

∞

∫
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Homework: Time Averaging and Expected Value

• Generate a Random Variable uniformly distributed 

between 0 and 1

– X ~U(0,1)

– Pdf - f(x) = 1, for 0 < x < 1, and 0 otherwise.

1. Run a simulation (Matlab) of 10.000 samples of U(0,1)1. Run a simulation (Matlab) of 10.000 samples of U(0,1)

2. Compute the average value of the 10.000 samples

3. Analytically calculate expected value of U(0,1)

4. Compare values obtained in 2 and 3. 
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Recall: Time Averaging and Expected Value

  
x

2 (t) = lim
T → ∞

1

2T
x

2 (t)dt
−T

T

∫

  
E(X

2) = x
2

fX (x)dx
−∞

∞

∫
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Homework: Time Averaging and Expected Value

• Generate a Random Variable uniformly distributed 

between 0 and 1

– X ~U(0,1)

– Pdf - f(x) = 1, for 0 < x < 1, and 0 otherwise.

1. Run a simulation (Matlab) of 10.000 samples of U(0,1)1. Run a simulation (Matlab) of 10.000 samples of U(0,1)

2. Compute the average power of the 10.000 samples

3. Analytically calculate second moment of U(0,1)

4. Compare values obtained in 2 and 3. 
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Why statistical modeling is useful?

1. Characterizing a stochastic process would require the 
specification of the signal at every single instant

2. Most cases we do not know the signal a priori

3. We get the whole signal in very rare occasions

Statistical model to:Statistical model to:

… sumarize the 
description of a signal 
behaviour

… describe the whole 
signal from a finite time 
interval

… describe sets 
of signals
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What’s next?
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Review of the Concept of Stochastic Process

• Definition 1: a SP can be seen as series of 

Random Variables; or it can be also seen 

as a RV that is time-variant

• Definition 2: a SP can be seen as a set of 

time-variant signals, each one with its 

probability of happening (imagine a bag 

with all the possible signals and you get 
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Stochastic Process Model

• To fully characterize an SP a probability measurement of each possible 
realization has to be provided. 
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Stochastic Process Model

• A complete description of a SP, X(t), requires the definition of the 
sequence (X(t1), …, X(tk)) for any value of k and any value of the 
k-tuple (t1, …, tn).

t1 t2 t3 t4 t5
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Stochastic Process Model

• In general practice, we will not look for a complete 

description of the SP, but we will define by two main 

aspects:

– Amplitude distribution

– Autocorrelation, which contains the time variation description 
(statistical relationship betwen two instants of the signal)

• Autocorrelation can be expressed also as Power 

Spectral Density – the Fourier Transform of the 

Autocorrelation

• Later, we can analyse the impact of a linear channel on 

the SP, i.e. the impact of the channel on the amplitude 

distribution and on the autocorrelation
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Summarizing main concepts of SP

• A SP is a mechanism that generates time-variant amplitudes – a 
signal. Each of the signal produced by a SP is called “realization”

• The SP model also applies to each realization. In other words, a 
model for a SP models also every possible realization of it. 

• We will model SP by their amplitude distribution and autocorrelation. • We will model SP by their amplitude distribution and autocorrelation. 
Amplitude distribution models the realization values at a given time, 
and autocorrelation models the time variation of the SP.

• By computing Fourier Transform of autocorrelation we get the Power 
Spectral Density – the information of the amount of energy contained 
in each frequency – the spectrum

• Noise in telecommunications is modeled as a SP
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Amplitude Distribution

• For each instant of time of the SP (sample), its amplitude is a 
Random Variable following a Probability Density Function (pdf)

• Amplitude Distribution is modeled by its pdf. It can be modeled 
both by its amplitude (two values for complex signals) or by its 
power. Thus, a pdf of the signal amplitude or a pdf of the signal 
power should be provided
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Amplitude Distribution
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Homework

• Specify the magnitudes on each axes of the above graph

– A) If we interpret the plot as a Gaussian-shaped signal– A) If we interpret the plot as a Gaussian-shaped signal

– B) If we interpret the plot as the pdf of the voltage of a noisy signal

• What is the mean value for each case?

Telecommunication Systems Fundamentals



Mean value: time domain and statistical approach

• Time average
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1

2T
x(t)dt

−T

T

∫

  
x

2 (t) = lim
T → ∞

1

2T
x

2 (t)dt
−T

T

∫

  
E (X ) = xf X (x)dx

−∞

∞

∫

  
E(X

2) = x
2
fX (x)dx

−∞

∞

∫
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Numerical Example

• Time average
x[n] = 5     6     2     1     2     3     2     6     1     4     1     6     2     4     6 

3     1     2     3     3     2     6     5     6     3     6     1     4     5     2     
6     5     5     4     5     2     2     2     4     5     2     3     6     4     6     
2     5     5     2     3     3     4     5     1     5     6     3     3     4     5     
5     5     3     3     6     4     6     2     4     4     6     1     4     4     1     
6 ...

[ ] 7,3][
1 1

0

== ∑
−

=

N

n

nx
N

nx

Roll a Dice

• Statiscal average

E X( ) = nf x n[ ]
n =1

N

∑ =

= 1⋅
1

6
+ 2⋅

1

6
+ 3⋅

1

6
+ 4 ⋅

1

6
+ 5⋅

1

6
+ 6⋅

1

6
= 3.5

3,7 for 100 samples, for 100.000 � 3,4997 
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The Correlogram

John Henry Poynting
(1852 - 1914)
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Amplitude distribution is not enough to 
describe a time-variant SP
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Autocorrelation

• Many power-defined signals (time-unbounded) exhibit 
repetition patterns. Although such signals are not periodic, 
they have some periodicity on their amplitude distribution. 
They are quasi-periodic

• How can we study such signals?

• An approach to analyze quasi-periodic patterns is to check 
the likeness between the signal and a delayed version of 
itself

• The autocorrelation function describes the likeness of a 
signal with a delayed version of itself. Therefore, we can 
identify quasi-periodic patterns by computing the signal 
autocorrelation
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Autocorrelation

• To measure likeness between a given signal and a delayed 
version of itself we use the inner product of both signals. So, 
autocorrelation is defined that way. 

• The likeness measurement (inner product) is defined in different 
way for power-defined and energy-defined signals

• Calculation of inner product depends on the available information 
of the signal

– If time description of realizations is available, we can compute inner product 

as time average

– If statistical information is available, inner product will be computed as 

statistical average
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Example 1: Energy-Defined Signal
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Example 1: Energy-Defined Signal

…
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Example 1: Energy-Defined Signal
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Example 1: Energy-Defined Signal
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Example 1: Energy-Defined Signal
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Example 1: Energy-Defined Signal

…
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Example 1: Energy-Defined Signal
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Example 2: Energy-Defined Signal
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Autocorrelation for Energy-Defined Signals

• If x[n] is a discrete signal energy-defined, its autocorrelation 
function Rx[k] is defined as:

R
x
[k] = x[n]

n=−∞

∞

∑ x[n − k]

= x[k]∗ x[−k]

• If x(t) is a continuous-time signal energy-defined, its 
autocorrelation function Rx(t) is defined as:

R
x
(τ ) = x(t)x(t − τ )dt

−∞

∞

∫
= x(τ ) ∗ x(−τ )
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Example 4: Power-Defined Signal
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Autocorrelation for Power-Defined Signals

• If x[n] is a discrete signal power-defined, its autocorrelation 
function Rx[k] is defined as:

R
x
[k] = lim

N → ∞

1

2N +1
x[n]

n =−N

N

∑ x[n − k]

• If x(t) is a continuous-time signal power-defined, its autocorrelation 
function Rx(t) is defined as:

Telecommunication Systems Fundamentals

R
x
(τ) = lim

T →∞

1

2T
x(t)x(t − τ)dt

−T

T

∫



Homework

• Compute the autocorrelation of:     x(t) = Acos 2πft( )
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Autocorrelation Summary

• The autocorrelation function is a measurement of the self-
likeness of a signal – in other words, the autocorrelation 
gives information about the likeness of a signal with itself 
but delayed

• Therefore, the autocorrelation function summarizes the time 
behavior of a signalbehavior of a signal

• Mathematically, the autocorrelation function is a projection 
(inner product) of a signal against a delayed version of itself 
with all possible values of delay. Consequently, the 
maximum of the autocorrelation function is at delay equal to 
zero – the likeness of a signal with itself – its power or 
energy

Telecommunication Systems Fundamentals



Autocorrelation Properties

• Autocorrelation definition is different for energy-defined 
and power-define signals. 

• In both cases, autocorrelation measures signal 
likeness to delayed version of itself, referring this 
likeness to its maximum value which happens at delay 
equal to zero.equal to zero.

• For energy-defined signals

• And for power-defined signals

xER =)0(
x

xPR =)0(
x
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Autocorrelation Properties

• Autocorrelation function satisfies:

• And for the particular case of periodic signals, it holds that:

R
x
(τ ) ≤ R

x
(0)

-20 -15 -10 -5 0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

-20 -15 -10 -5 0 5 10 15 20
-2  

-1  

0   

1   

2   

• And for the particular case of periodic signals, it holds that:

where L is any integer number and T is the signal period

  Rx
(L ⋅ T ) = R

x
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Autocorrelation Properties

– Symmetry: RX(τ) is and even signal: RX(τ) = RX(- τ).

– Maximum: RX(τ) maximum is for τ = 0 (and coincides with 
energy/power of the signal),  | RX(τ) | ≤ RX(0).

– Periodicity: if for a give value of T, it holds that RX(T) = RX(0), – Periodicity: if for a give value of T, it holds that RX(T) = RX(0), 
then it also holds that RX(kT+ τ) = RX(0+ τ) for any integer 
value of k.

– Integrability: the autocorrelation function of any signal (except 
the periodic signals) can be integrated – i.e. it is a energy-
defined signal itself.
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Autocorrelation of Stochastic Processes

• Recall the two viewpoints for SP:

– A set of signals with common properties, although signals itself 
are not identical point-by-point

– A physical mechanism that generates sets of signals 
according to a stochastic pattern

• In any case, to describe an SP the set of signals has to • In any case, to describe an SP the set of signals has to 

be described, but a single signal can not be described. 

• So, how can we define the autocorrelation of a SP?
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Intuition

• Let’s assume, as starting point, that 

we have a set of signals and we 

select one of them by a random 

mechanism. 

• The autocorrelation of one of these 

realizations, x1(t), can be computed 

as its time average using next 

expression:
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X1(t) � Rxx,1
X2(t) � Rxx,2

X3(t) � Rxx,3

X4(t) � Rxx,4

expression:

    
R

xx,1(τ) = lim
T →∞

1

2T
x1(t)x1(t −τ)dt

−T

T

∫ X(t)

0 2 4 6 8 1 0 1 2
0

t i m e
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Intuition

• But if we compute autocorrelation in such a way, we are not 

computing the autocorrelation of the SP, but the one of a 

particular signal (realization)

• So, in order to compute the autocorrelation of the SP, we 

should average over all possible realizations:should average over all possible realizations:

R
x
(τ) = E lim

T →∞

1

2T
x(t)x(t − τ)dt

−T

T

∫
 

  
 

  

= lim
T →∞

E
1

2T
x(t)x(t − τ)dt

−T

T

∫
 

  
 

  

= lim
T →∞

1

2T
E x(t)x(t − τ)[ ]dt

−T

T

∫
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Intuition ���� Definition

• If the expected value does not depend on the time, then:

• The autocorrelation function for a SP is noted as RX(t1,t2), and its 
definition is 

R (t ,t ) = E [X(t ) X(t )]:

R
x
(τ) = E x(t)x(t − τ)[ ]lim

T →∞

1

2T
dt

−T

T

∫
= E x(t)x(t − τ)[ ]

RX(t1,t2) = E [X(t1) X(t2)]:

• Which is a measurement of the likeness between Random 
Variables obtained in two instants of the SP, X(t1) and X(t2). i.e.  
RX(t1,t2) is a measurement of the likeness (variation) of the signal 
in two different instants of time t1 and t2.

RX (t1, t2) = E X(t1)X(t2)[ ]

= x1−∞

∞

∫ x2 fX (t1 ),X (t2 )(x1, x2)dx1dx2−∞

∞

∫
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Example: Rxx based on one SP realization

x(t) Rxx(t)

One
realization

of SP 1

One
realization

of SP 2

Telecommunication Systems Fundamentals

of SP 2

One
realization

of SP 3

Autocorrelations obtained using
only the single realization

SP 3 more correlated than SP 2, 
which is more correlated than SP 1 

(uncorrelated)



Example: Rxx averaging over “all” (many) SP 
realizations

SP 3 more 
correlated than
SP 2, which is

Telecommunication Systems Fundamentals

SP 2, which is
more correlated

than SP 1 
(uncorrelated)



Uncorrelated Processes

• A SP is uncorrelated if RX(t1,t2) = 0, for any t1 and t2
such that t1 ≠ t2.
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Noise in Telecommunications often is Uncorrelated
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Sine on/off wave (cricket)

270 ms

0,2 ms45 ms
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Sine on/off wave
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Summarizing

• Autocorrelation is a measurement of the likeness 

between a signal and a delayed version of itself

• Each realization of a SP may be quite different and 

computing any statistic on it will mislead to totally 

incorrect information. Autocorrelation has to average incorrect information. Autocorrelation has to average 

all (many) realizations, i.e. compute the expected value

• Peak values in the autocorrelation function hints about 

repetition patterns 
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Statistical Independence

• Two scenarios:

– Independence of the samples of a signal

– Independence of two signals

• Intuitively, two samples are independent if the mechanisms that • Intuitively, two samples are independent if the mechanisms that 
generates them are also independent

• Formally, two Random Variables, X1 and X2, are independent if, 
and only if,

Telecommunication Systems Fundamentals
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Intuition for Independent Samples

Rolling a dice

3, 1, 5, 1, 4, 2, 2, 1, 6, 4, 3Independent:

Dependent:

4, 6, 6, 5, 6, 4, 3, 7, 10, 7, …

3, 1, 5, 1, 4, 2, 2, 1, 6, 4, 3, …

Telecommunication Systems Fundamentals



Intuition for Independent Signals

3, 1, 5, 1, 4, 2, 2, 1, 6, 4, 3

1, 1, 6, 4, 3, 1, 2, 4, 5, 5, 2

Indepe
ndent?

3, 1, 5, 1, 4, 2, 2, 1, 6, 4, 3

1, 1, 6, 4, 3, 1, 2, 4, 5, 5, 2

4, 2, 11, 5, 7, 3, 4, 5, 11, 9, 5

Telecommunication Systems Fundamentals
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Independent:
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SP and Stationarity

• An SP is stationary if its statistics do not depend on 

time
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Stationary Stochastic Processes

• When arriving to practical SP, two types of stationarity can be defined:
– Strict (Sense) Stationary Processes (SSP). The pdf of the process does not 

change with time delay ∆

– Wide Sense Stationary Processes (WSSP), those that satisfy the two following 
restrictions:

• The mean value of the process, E{X(t)}, does not varies with time

),...,,(),...,,( 2121 ∆+∆+∆+= nXnX tttftttf

• The mean value of the process, E{X(t)}, does not varies with time

• The autocorrelation RX(t1,t2) depends only on the time difference τ = t1 - t2. Thus, for 
WSSP we compute the autocorrelation as RX(τ).

• An SSP is also WSSP, but the opposite is not true 

Telecommunication Systems Fundamentals
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SP and Ergodicity

• A Stochastic Process is Ergodic if its statistics can be 

computed as time average of one of its realizations

lim
T →∞

1

2T
g(x(t))dt = E(g(X(t)))

−T

T

∫

• Ergodicity implies stationarity. Any ergodic process is 

stationary

• However, stationarity does not imply ergodicity

• Example: roll a dice infinite times
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Example 7

• The following SP is not stationary, and therefore it is 

not ergodic either. 
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Example 8

• The following Strict Sense Stationary Process is not 

Ergodic. Why?
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Time Averaging and Statistical Expected Value

• Time average and expected value returns the same 

value only for ergodic SP

• As example, if we assume that human voice signal 

corresponds to a ergodic SP, then we can estimate 

statistics from time averaging only one recorded piece statistics from time averaging only one recorded piece 

of voice, and assume that those values coincide with 

the statistics of any voice signal
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x(t) = lim

T → ∞

1

2T
x(t)dt

−T

T

∫

  
E(X) = xfX (x)dx

−∞

∞

∫

Time Averaging and Statistical Expected Value

  
x

2 (t) = lim
T → ∞

1

2T
x

2 (t)dt
−T

T

∫

  
E(X

2) = x
2
fX (x)dx

−∞

∞

∫

    
R

x
(τ) = lim

T → ∞

1

2T
x(t)x(t − τ)dt

−T

T

∫

    

RX (τ) = E(X(t)X (t −τ))
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SP classification

Non-Stationary 
(both power and 

Stationary (power 

defined signals)

(both power and 

energy defined 

signals)
Ergodic (power 

defined signals)
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What is the practical meaning of Stationarity?

• We can characterize one realization from a segment of it
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What is the practical meaning of Ergodicity?

• We can characterize the SP from a realization of it
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Cross-Correlation

• If autocorrelation is a measurement of how a signal 

looks like itself delayed; the cross-correlation function 

provides information about likeness of two signals 

(delaying one respect the other)

• Depending of the type of signals, cross-correlation can • Depending of the type of signals, cross-correlation can 

be defined for:

– Cross-Correlation of Energy Defined signals

– Cross-Correlation of Power Defined signals

– Cross-Correlation of one Energy Defined signal and one 
Power Defined signal
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Cross-Correlation of two Energy Defined Signals

• Let x[n] and y[n] be two energy defined discrete signals (or one 
Energy defined and the other Power defined). Their cross-
correlation function is defined as:

R
xy[k] = x[n]

n=−∞

∞

∑ y[n − k]

= x[k]∗ y[−k]

• If x(t) and y(t) are two energy defined continuous signals (or one 
Energy defined and the other Power defined). Their cross-
correlation function is defined as:

= x[k]∗ y[−k]

R
xy (τ) = x(t)y(t − τ )dt

−∞

∞

∫ = x(τ) ∗ y(−τ )
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Example 1

x[n]

y[n]

-10 -5 0 5 10
0

0.5

1

1.5

0

5

Rxy[k]

Ryx[k]

-10 -5 0 5 10
0

-10 -5 0 5 10
0

5

10

-10 -5 0 5 10
0

5

10

Telecommunication Systems Fundamentals



Example 2
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Cross-Correlation of two Power Defined Signals

• Let x[n] and y[n] be two power defined discrete signals. 

Their cross-correlation function, Rxy[k], is defined as:

• Let x(t) and y(t) be two power defined continuous 

R
xy[k] = lim

n →∞

1

2n +1
x[n]

n=−∞

∞

∑ y[n − k]

• Let x(t) and y(t) be two power defined continuous 

signals. Their cross-correlation function, Rxy(τ), is 

defined as:

R
xy (τ ) = lim

T →∞

1

2T
x(t)y(t − τ )dt

−T

T

∫
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Cross-Correlation from a Statistical Viewpoint

• Cross-Correlation of two stochastic processes can be 

defined also using their joint-pdf:

RXY (t1, t2) = E X(t1)Y (t2)[ ]

= x
−∞

∞

∫ yfX ( t1 ),Y (t2 )(x,y)dxdy
−∞

∞

∫

• When both processes are stationary, then it holds that:

RXY (τ) = E X(t)Y (t − τ )[ ]

= x
−∞

∞

∫ yfX ( t ),Y ( t−τ )(x, y)dxdy
−∞

∞

∫

Telecommunication Systems Fundamentals



Cross-Correlation Properties

– Rxy(τ) = Ryx(-τ).

– Pxy = Rxy(0) = Ryx(0) can be understood as the cross-power between 

x(t) and y(t).

– The maximum of Rxy(τ) points to the time delay at which both 

signals exhibit their maximum likeness
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Uncorrelated Processes

• Two SP are uncorrelated if Rxy(τ) = 0 for every value of τ

• It can be proven that if two SP are independent and at least one of 
then has zero mean, then they are uncorrelated
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Sum of Signals

• Autocorrelation of the sum of two signal can be expressed as:

R
x + y (τ ) = R

x
(τ ) + Ry (τ ) + R

xy (τ ) + Ryx (τ )

And particularizing for τ=0, the power of the sum is:

P
x + y = R

x + y (0)

= R (0) + R (0) + R (0) + R (0)= R
x
(0) + Ry (0) + R

xy (0) + Ryx (0)

= P
x

+ Py + P
xy + Pyx

Important to note that only when the two processes are 

uncorrelated, the power of the sum is the sum of the 

powers
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Sine Signal plus DC
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Psin = lim
T →∞

1

2T
A 2 sin 2 ( ft )dt

−T

T

∫

= lim
T →∞

1

2T
−

1

2
A

2 cos(2 ft) −
1

2
A

2 cos( ft − ft )
 

  
 

  
dt

−T

T

∫

= lim
T →∞

1

2T
2T

1

2
A

2
=

A
2

2

- 1

0

1

2

3

Pcon = lim
T → ∞

1

2T
B

2
dt

−T

T

∫ = B
2

- 3 - 2 - 1 0 1 2 3
- 3

- 2

con
T → ∞ 2T −T

∫

- 3 - 2 - 1 0 1 2 3
- 3

- 2

- 1

0
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3

Pcon + sin = lim
T →∞

1

2T
(B + A sin( ft)) 2

dt
−T

T

∫

=
A

2

2
+ B

2

= Pcon + Psin
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Gaussian Noise
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Why do we want to study the Spectrum?

• Cyclic processes are quite common in nature

– Astronomy: lunar phases, planets orbits, solar storms, …

– Biology: heart beat,…

– Physics: acoustic vibrations, electromagnetic waves, …

• In communications, spectrum of the signal is of capital 

importance when designing and analyzing systemsimportance when designing and analyzing systems

• If a signal is deterministic, the Fourier Transform 

computes the spectrum, but what happen for 

Stochastic Processes?
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Energy Spectral Density

• The Energy Spectral Density (ESD) of a energy-

defined signal is calculated as the Fourier Transform of 

its auto-correlation function:

GX ( f ) = F RX (τ ){ }

= F x(τ ) ∗ x(−τ ){ }

– For Discrete time signals ESD is defined in similar way

= F x(τ ) ∗ x(−τ ){ }

= X ( f )
2

Telecommunication Systems Fundamentals



Energy Spectral Density

• The Energy Spectral Density describes how the energy 

is distributed along different frequencies

• So, the total signal energy can be calculated by 

integrating the ESD for all frequencies 

E = x(t)
2
dt

∞

∫E X = x(t)
2
dt

−∞

∞

∫

= X ( f )
2
df

−∞

∞

∫

= GX ( f )df
−∞

∞

∫
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Power Spectral Density

• The Power Spectral Density (PSD) of a power-defined signal is 
calculated as the Fourier Transform of its auto-correlation 
function:

SX ( f ) = F RX (τ ){ }

• For Discrete time signals PSD is defined in similar way
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Power Spectral Density

• The Power Spectral Density describes how the power 

is distributed along different frequencies

• So, the total signal power can be calculated by 

integrating the PSD for all frequencies 

P = lim
1

x(t)
2
dt

T

∫PX = lim
T →∞

1

2T
x(t)

2
dt

−T

T

∫

= SX ( f )df
−∞

∞

∫
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Sine Wave and the Sum of two Sine Waves
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PSD properties

1. Symmetry: PSDs are even functions, Gx(f)=Gx(-f) y 

Sx(f)=Sx(-f).

2. Sign: PSD is real-valued and No-Negative for any 

value of frequency f, Gx(f)≥0, Sx(f)≥0.

3. Integrability: Energy or Power can be calculated as 

the integral of the their Spectral Density
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Cross Spectral Density

• Let be x(t) and y(t) two energy-defined signals which 

cross-correlation function is Rxy(τ). Their Cross 

Spectral Density is defined as the Fourier Transform of 

their cross-correlation function:

    
Gxy ( f ) = F Rxy (τ){ }

• Analogously, if x(t) and y(t) are power-defined signals 

their cross spectral density is defined as:

    
Gxy ( f ) = F Rxy (τ){ }

Sxy ( f ) = F Rxy (τ ){ }
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Sum of Signals

• Spectral Density of a sum of signals satisfies the 

following relationship:

S
x + y ( f ) = F R

x + y (τ ){ }

{ }= F R
x
(τ ) + Ry (τ ) + R

xy (τ ) + Ryx (τ ){ }

= S
x
(τ ) + Sy (τ ) + S

xy (τ ) + Syx (τ )
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Summary of Spectral Density

• Energy (or Power) Spectral Density describes how energy 
(or power) is distributed along frequencies

• Can be used for Stochastic Processes and deterministic 
signals

• In the case of SP, Spectral Density represents an statistical 
average of the process. One particular realization may have 
different spectrum

• Spectral Density of the sum of several signals can be 
calculated by computing the Spectral Density of each 
elementary signal and their cross spectral density
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Summary of Concepts in this Chapter

• In this chapter we learned:

– How to model a Stochastic Process

– Different properties of SP: Independence, Stationarity, Ergodicity

– How to compute the autocorrelation of a SP and its physical meaning

– How to compute the Energy(Power) Spectral Density of a SP and its 

physical meaningphysical meaning
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