# **Topic 1: Review of Stochastic Processes**

#### **Telecommunication Systems Fundamentals**

Profs. Javier Ramos & Eduardo Morgado Academic year 2.013-2.014



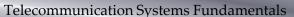
## **Concepts in this Chapter**

- Review of Signals models and classification
  - Examples of actual signals
  - Signal modeling
  - Signals classification
- Review of Statistical Basics: Modeling of Stochastic Processes
  - Amplitude distribution (probability density function, pdf) and averages
  - Autocorrelation
  - Independence
  - Stationarity
  - Ergodicity
  - Cross-correlation
  - Power and Energy Spectral Density

Theory classes: 3 sessions (6 hours) Problems resolution: 1 session (2 hours) Lab (Matlab): 2 hours

## Bibliography

- 1. Communication Systems Engineering. John. G. Proakis. Prentice Hall
- 2. Sistemas de Comunicación. S. Haykin. Wiley



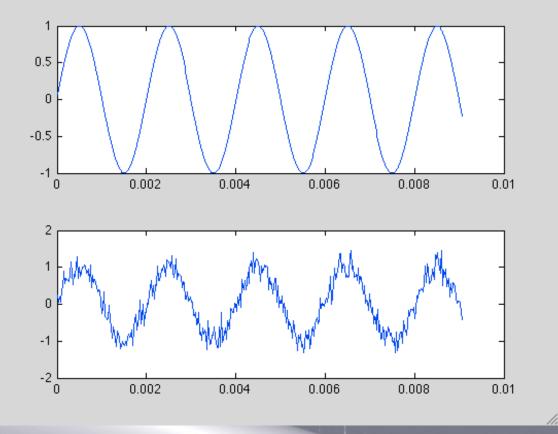


# **Concepts in this Chapter**

- Review of Signals models and classification
  - Examples of actual signals
  - Signal modeling
  - Signals classification
- Review of Statistical Basics: Modeling of Stochastic Processes
  - Amplitude distribution (probability density function, pdf) and averages
  - Autocorrelation
  - Independence
  - Stationarity
  - Ergodicity
  - Cross-correlation
  - Power and Energy Spectral Density



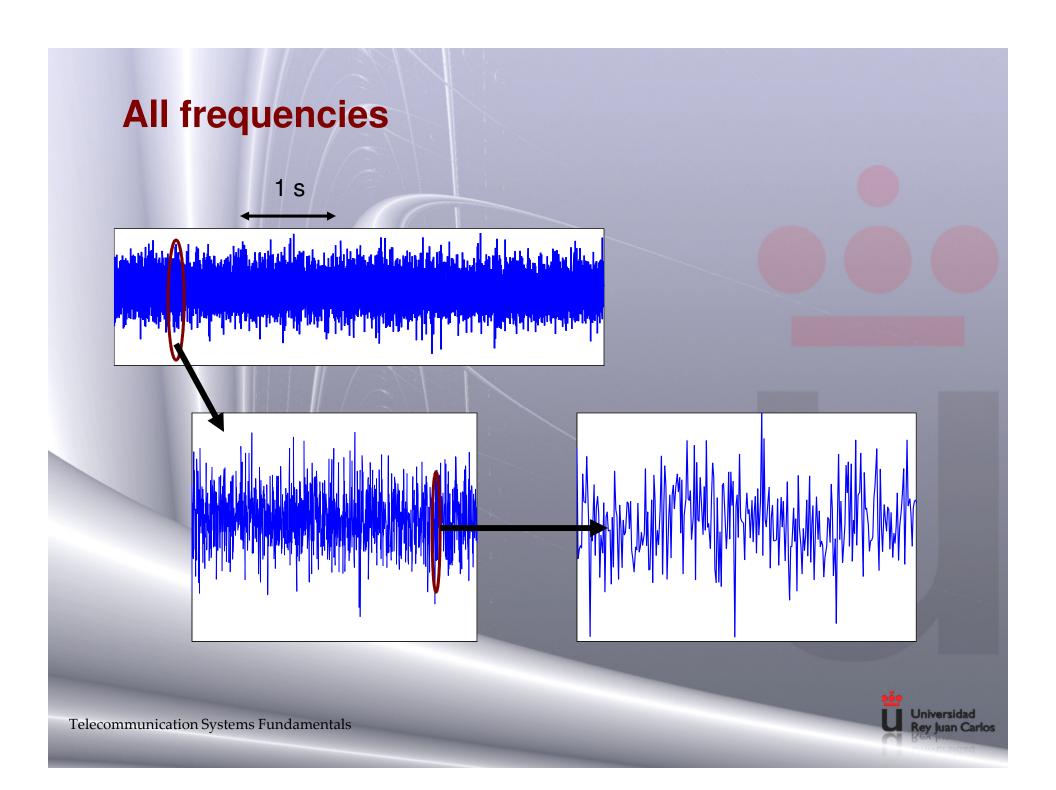
# **Pure Tone**



Noise Free

Aditive Noise

Universidad Rey Juan Carlos

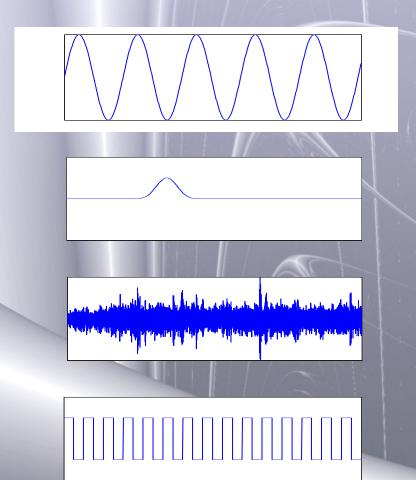


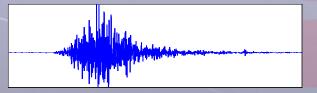
## Why modeling Signals?

- To answer the following questions:
  - What information does the signal contain? How is the info coded into the signal? How much info does the signal contain?
  - How does the channel affect the transmitted signal?
  - How is the telecommunication system designed?
- We describe signals by their mathematical model measurable characteristics of the signal



# How would you describe them?



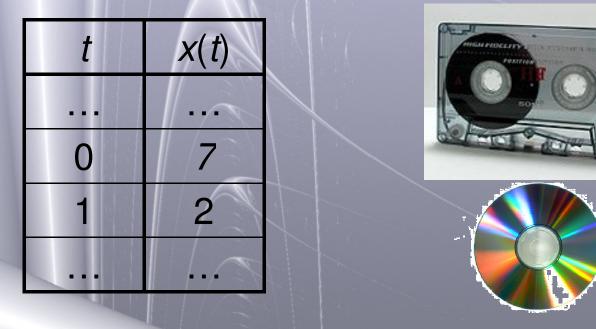






# **Signal Modeling**

 In a point-by-point description, the value of the signal at each time instant is stored in a look-up-table



• The point-by-point description is valid for any signal (assuming the sampling rate is fast enough) and contains all the information within the signal, but "seeing" the information is not evident

**Jniversidad** 

ey luan Carlos

## **Signal Modeling**

• Some signals can be modeled by a mathematical expression that provides its amplitude as function of time

$$x(t) = \sum_{n=0}^{\infty} A_n \cos(n\omega_0 t)$$

- This type of signals are named "Deterministic" because their lack of randomness
  - Only few signals in telecommunications systems can be modeled as simple as this

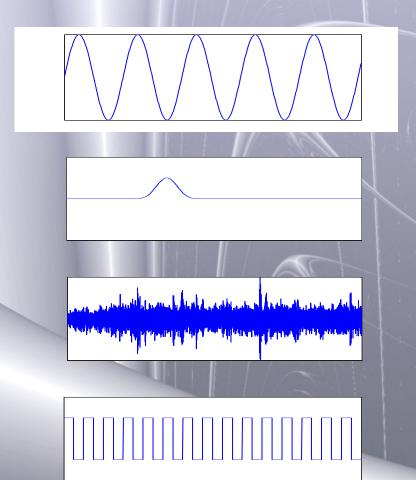


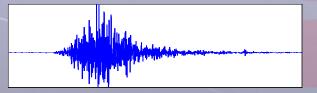
# **Signal Modeling**

- We can briefly describe a signal by some of its characteristics
  - Mean value
  - Mean squared value (power)
  - Energy
  - Standard deviation
  - Autocorrelation
- It is a universal procedure (usable for any kind of signal), and it gives some criteria to classify signals. However, it does not describe the signal completely (univocally).



# How would you describe them?









#### **Mean Value**

• For time-discrete signals, mean value is defined as:

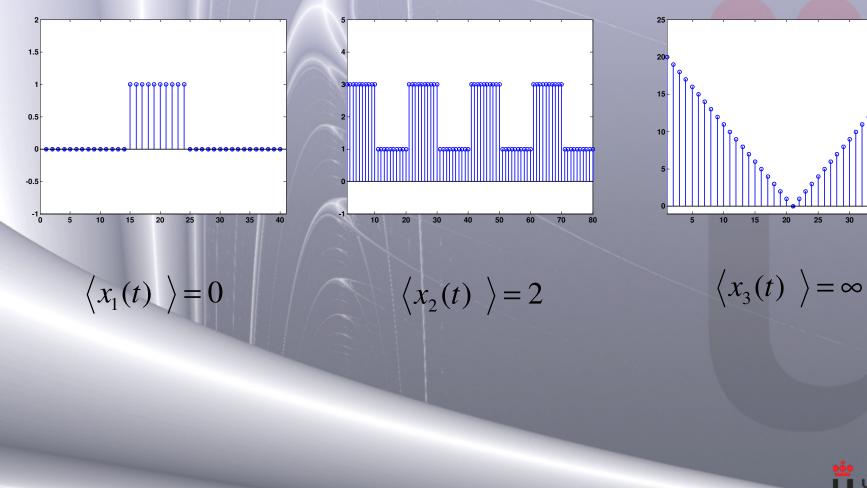
$$\langle x[n] \rangle = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]$$

• For time-continuous signals, mean value is defined as:

 $\langle x(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$ 



# **Mean Value**





#### Energy

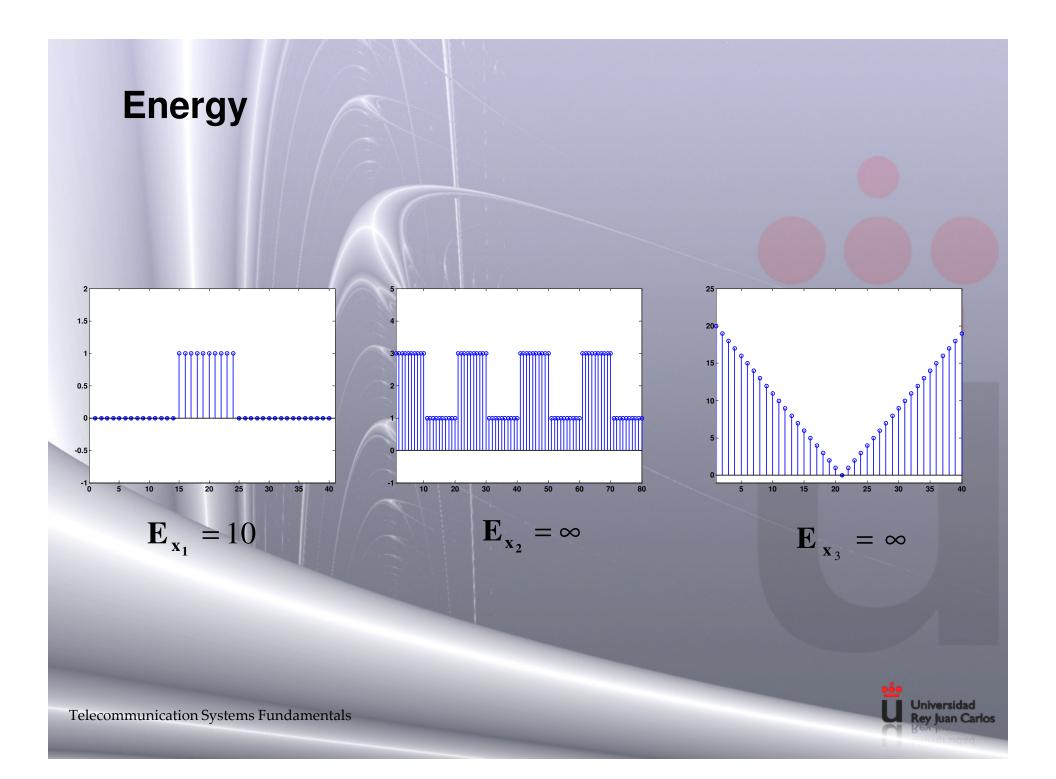
- A decisive classification of signals is related to its energy and power: finite energy, or power defined. For finite energy signals, it is defined
  - For discrete signals:

$$\mathbf{E}_{\mathbf{x}} = \sum_{n=1}^{\infty} \left| x[n] \right|^2$$

For continuous signals:

$$\mathbf{E}_{\mathbf{x}} = \int_{-\infty}^{\infty} \left| x(t) \right|^2 dt$$





#### **Average Power**

• The average power of discrete signals is defined as:

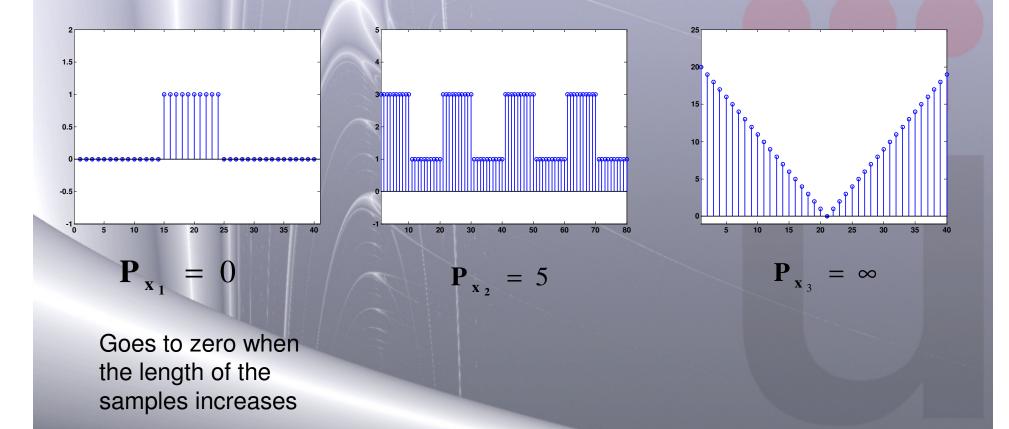
$$\mathbf{P}_{\mathbf{x}} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

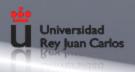
• While the average power of continuous signal is defined as:

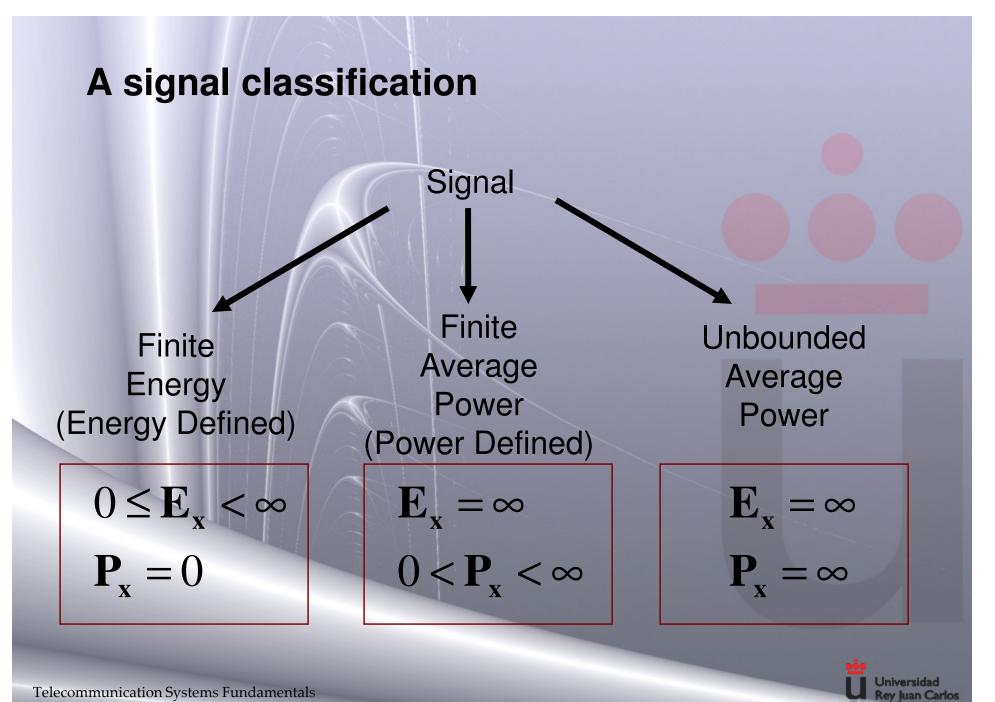
$$\mathbf{P}_{\mathbf{x}} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$



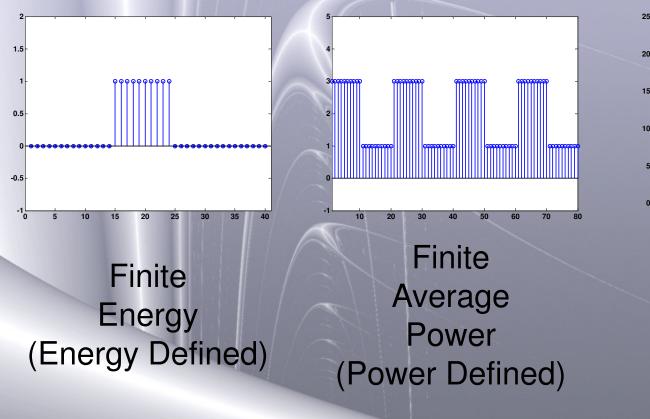
# **Average Power**

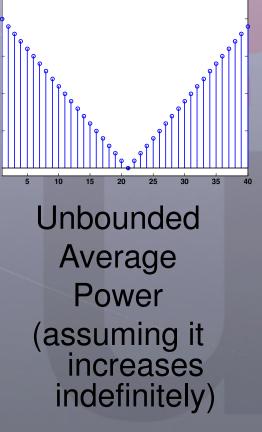




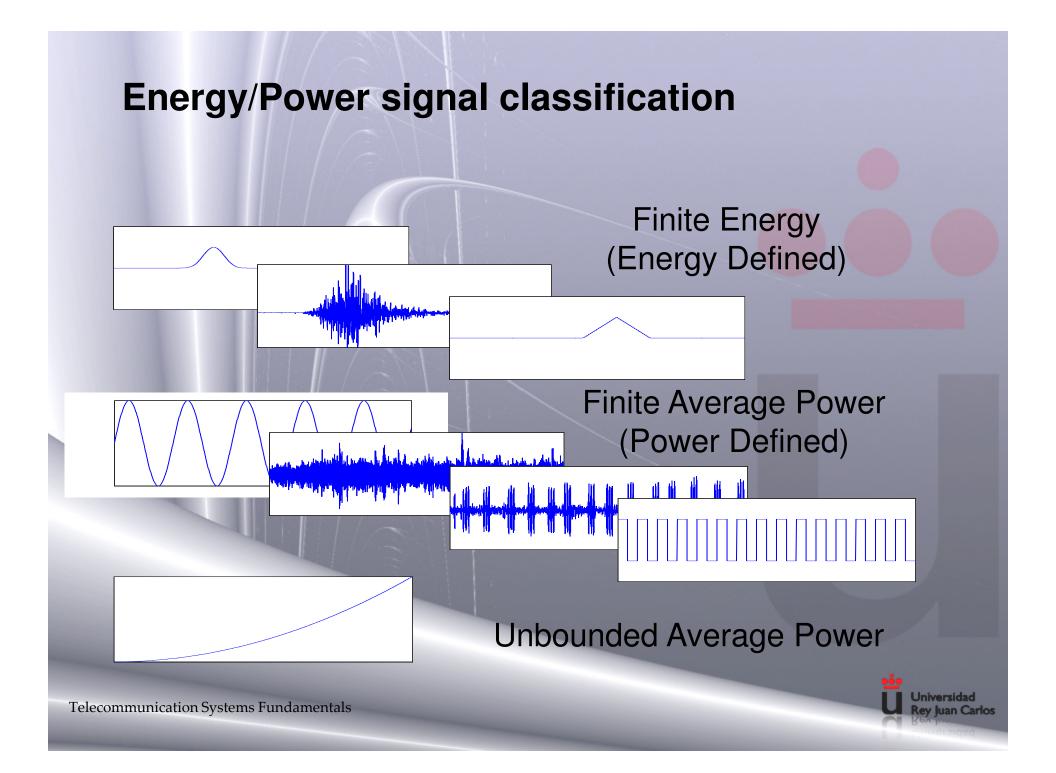


#### **Energy/Power signal classification**









#### Homework

Compute: i) Average Value; ii) Energy and ii) Average Power of • the two following signals:

 $x_1(t) = A\cos(2\pi f t)$  $x_2(t) = Ae^{j2\pi f t}$ 



#### **Classifying Signals: A Taxonomy**

Continuous / Discrete

□ Analog / Digital

#### Deterministic / Stochastic (random signals)

□ Deterministic:

□ Energy Defined (time limited)

□ Power Defined

Periodic / Non periodic

#### □ Stochastic

□ Stationary

Ergodic / Non-Ergodic

Non-Stationary

Other classifications

□ Real valued / Complex

□ Even / Odd

Hermitical / Non-Hermitical



# **Concepts in this Chapter**

- Review of Signals models and classification
  - Examples of actual signals
  - Signal modeling
  - Signals classification
- Review of Statistical Basics: Modeling of Stochastic Processes
  - Amplitude distribution (probability density function, pdf) and averages
  - Autocorrelation
  - Independence
  - Stationarity
  - Ergodicity
  - Cross-correlation
  - Power and Energy Spectral Density



## **Recall: Time Averaging and Expected Value**

$$\langle x(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

 $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ 



#### **Homework: Time Averaging and Expected Value**

- Generate a Random Variable uniformly distributed between 0 and 1
  - − X ~U(0,1)
  - Pdf f(x) = 1, for 0 < x < 1, and 0 otherwise.
- 1. Run a simulation (Matlab) of 10.000 samples of U(0,1)
- 2. Compute the average value of the 10.000 samples
- 3. Analytically calculate expected value of U(0,1)
- 4. Compare values obtained in 2 and 3.



#### **Recall: Time Averaging and Expected Value**

 $\left\langle x^{2}(t)\right\rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^{2}(t) dt$ 

 $E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$ 



## **Homework: Time Averaging and Expected Value**

- Generate a Random Variable uniformly distributed between 0 and 1
  - − X ~U(0,1)
  - Pdf f(x) = 1, for 0 < x < 1, and 0 otherwise.
- 1. Run a simulation (Matlab) of 10.000 samples of U(0,1)
- 2. Compute the average power of the 10.000 samples
- 3. Analytically calculate second moment of U(0,1)
- 4. Compare values obtained in 2 and 3.



### Why statistical modeling is useful?

- 1. Characterizing a stochastic process would require the specification of the signal at every single instant
- 2. Most cases we do not know the signal *a priori*
- 3. We get the whole signal in very rare occasions

Statistical model to:

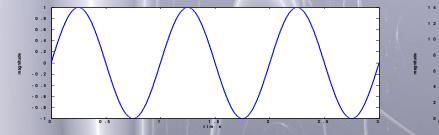
... **sumarize** the description of a signal behaviour

... describe **sets of** signals

... describe the whole signal from a finite time interval



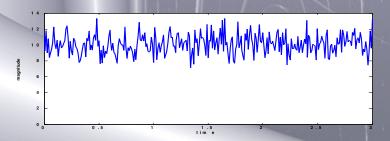
# How do you describe them?

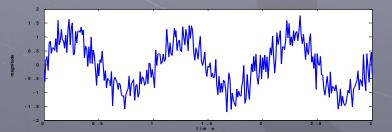


when when man we we have a straight and a straight

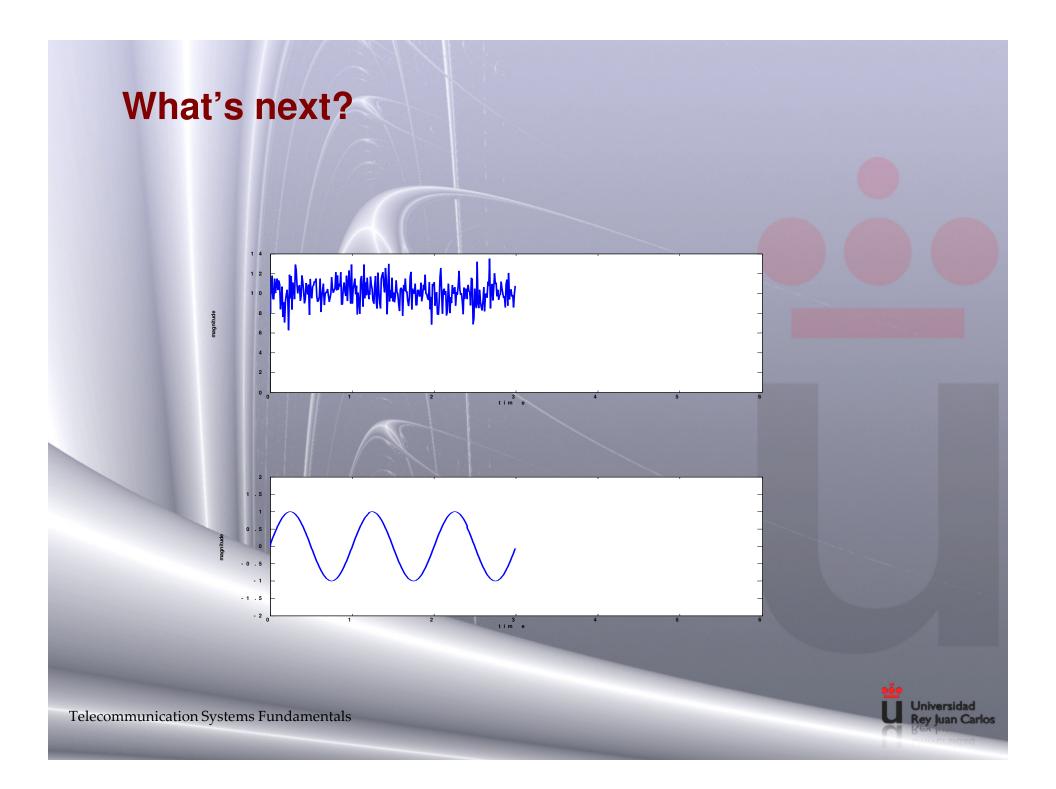
1.5 tim e

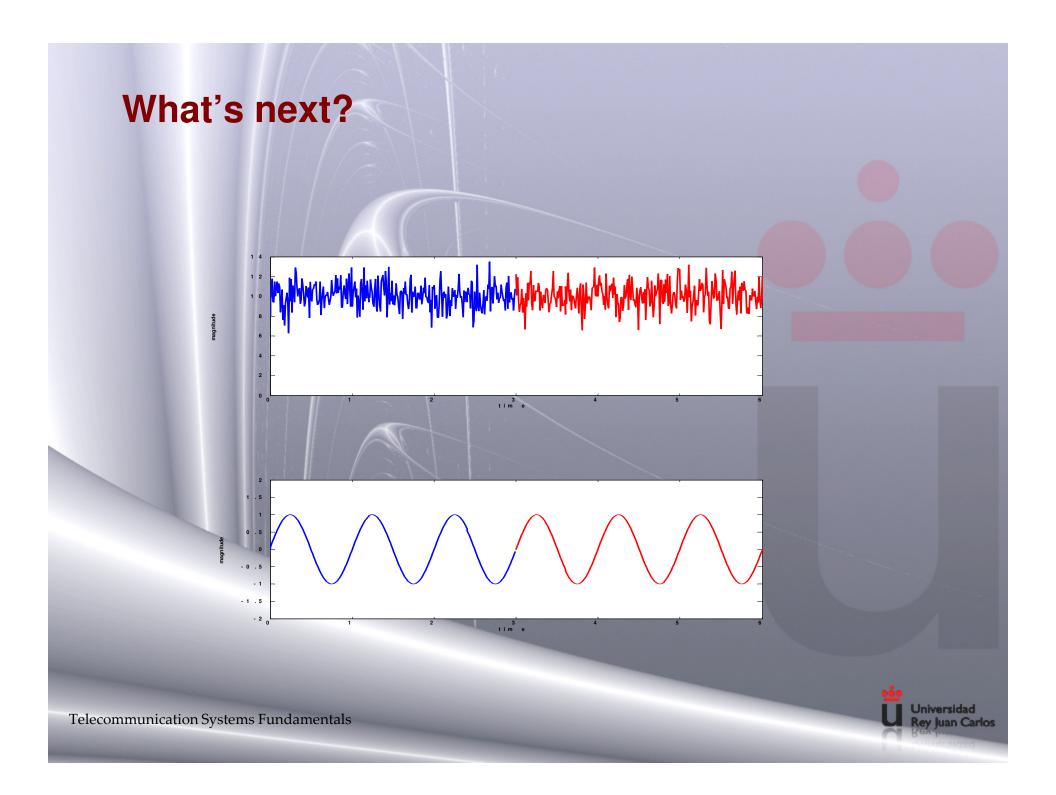
Why Statistical Modeling is Useful?





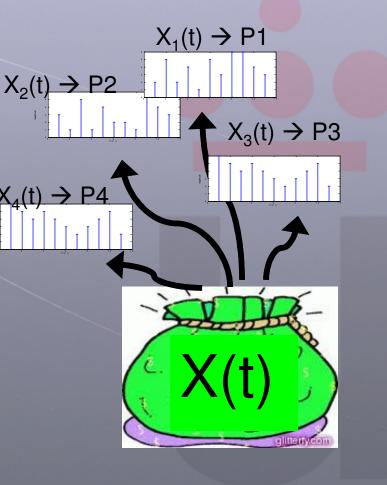






#### **Review of the Concept of Stochastic Process**

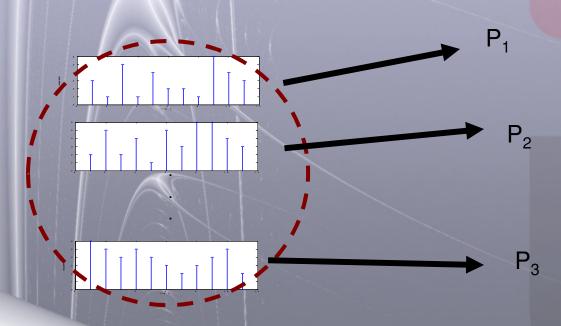
- Definition 1: a SP can be seen as series of Random Variables; or it can be also seen as a RV that is time-variant
- Definition 2: a SP can be seen as a set of time-variant signals, each one with its probability of happening (imagine a bag with all the possible signals and you get one of them).
- Note: we talk about "time" when referring to the independent variable, but it could be different:
  - Example: thickness of bar as function of its length





#### **Stochastic Process Model**

 To fully characterize an SP a probability measurement of each possible realization has to be provided.



• In other words, we should be able to tell how likely is any given observation (realization) to happen

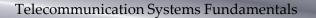


#### **Stochastic Process Model**

 $t_2$ 

 $t_3$ 

A complete description of a SP, X(t), requires the definition of the sequence (X(t<sub>1</sub>), ..., X(t<sub>k</sub>)) for any value of k and any value of the k-tuple (t<sub>1</sub>, ..., t<sub>n</sub>).





 $t_5$ 

 $t_4$ 

#### **Stochastic Process Model**

- In general practice, we will not look for a complete description of the SP, but we will define by two main aspects:
  - Amplitude distribution
  - Autocorrelation, which contains the time variation description (statistical relationship betwen two instants of the signal)
- Autocorrelation can be expressed also as Power Spectral Density – the Fourier Transform of the Autocorrelation
- Later, we can analyse the impact of a linear channel on the SP, i.e. the impact of the channel on the amplitude distribution and on the autocorrelation



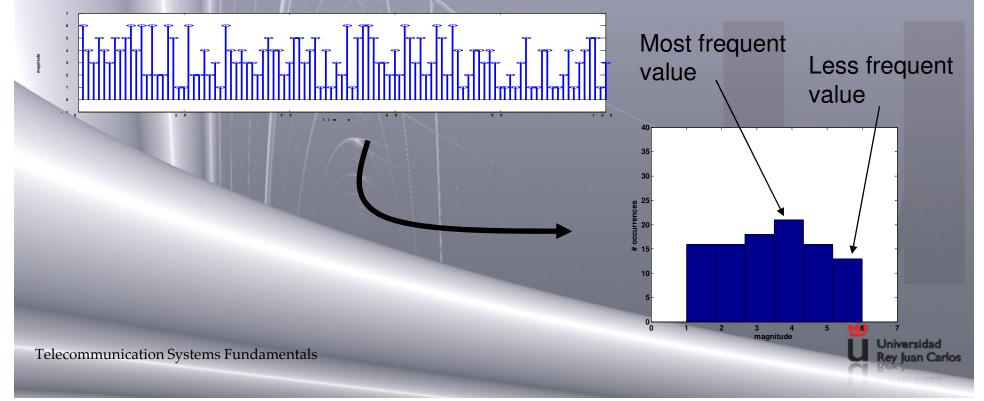
#### Summarizing main concepts of SP

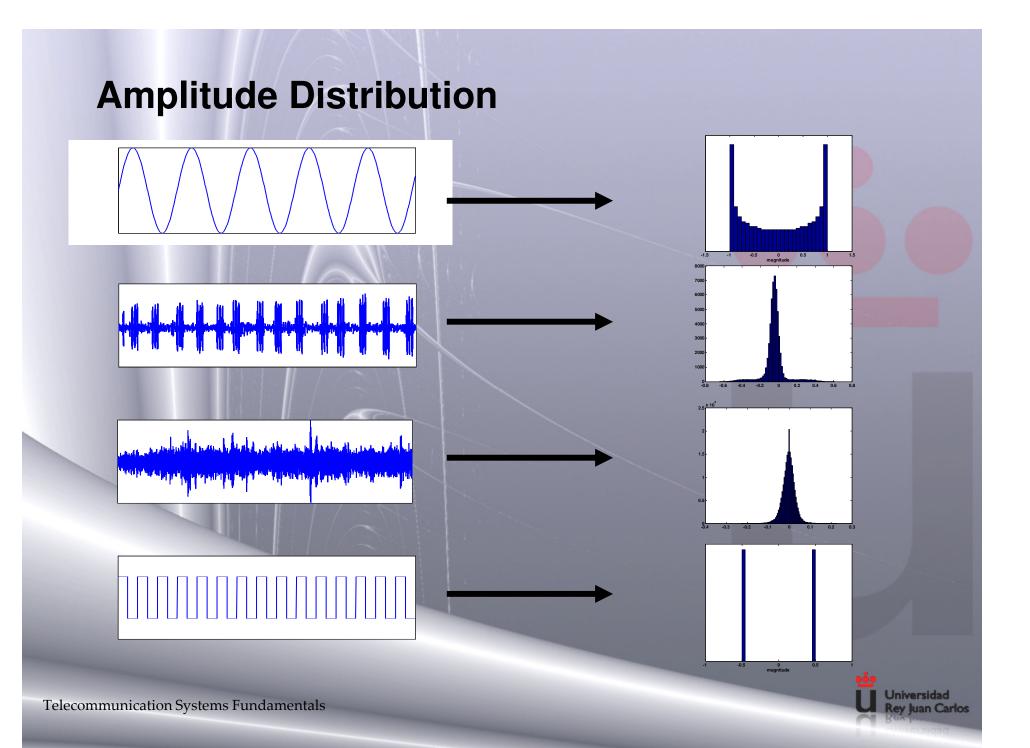
- A SP is a mechanism that generates time-variant amplitudes a signal. Each of the signal produced by a SP is called "realization"
- The SP model also applies to each realization. In other words, a model for a SP models also every possible realization of it.
- We will model SP by their amplitude distribution and autocorrelation. Amplitude distribution models the realization values at a given time, and autocorrelation models the time variation of the SP.
- By computing Fourier Transform of autocorrelation we get the Power Spectral Density – the information of the amount of energy contained in each frequency – the spectrum
- Noise in telecommunications is modeled as a SP



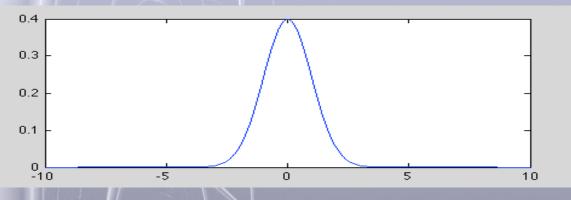
## **Amplitude Distribution**

- For each instant of time of the SP (sample), its amplitude is a Random Variable following a Probability Density Function (pdf)
- Amplitude Distribution is modeled by its pdf. It can be modeled both by its amplitude (two values for complex signals) or by its power. Thus, a pdf of the signal amplitude or a pdf of the signal power should be provided





## Homework



- Specify the magnitudes on each axes of the above graph
  - A) If we interpret the plot as a Gaussian-shaped signal
  - B) If we interpret the plot as the pdf of the voltage of a noisy signal
- What is the mean value for each case?



#### Mean value: time domain and statistical approach

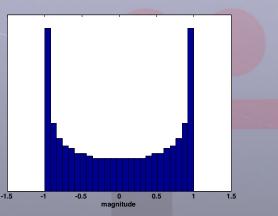
• Time average



$$\langle x(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

$$\left\langle x^{2}(t)\right\rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^{2}(t) dt$$

• Statistical mean value

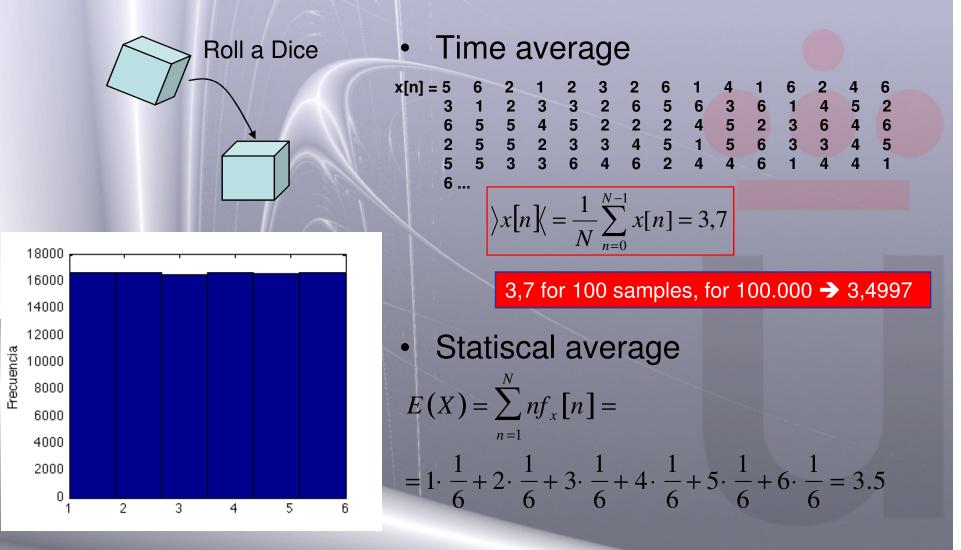


$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$



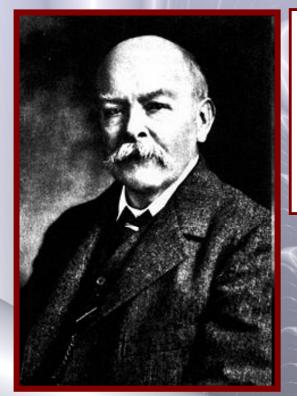
#### **Numerical Example**



Universidad

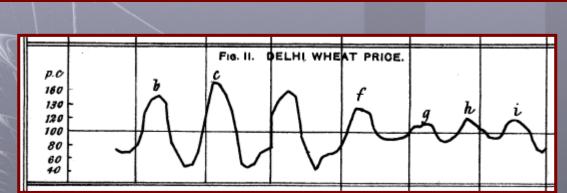
**Rey Juan Carlos** 

#### **The Correlogram**



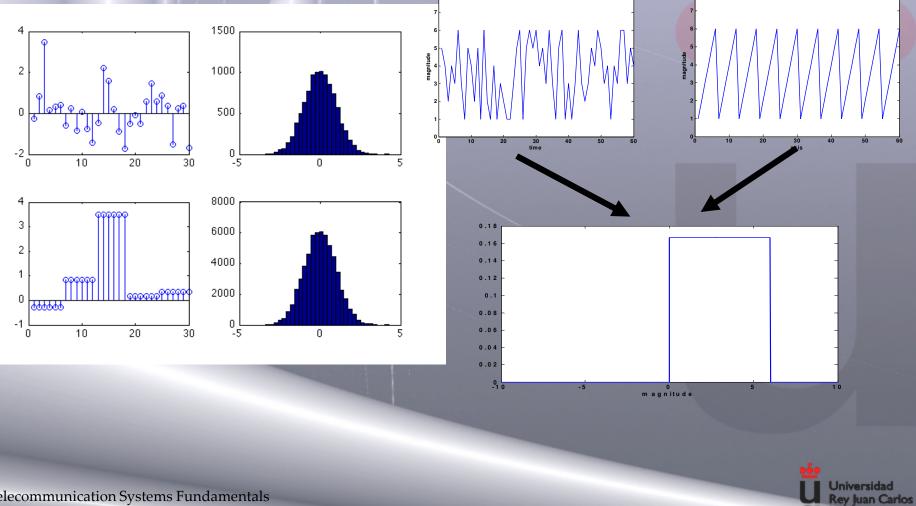
John Henry Poynting (1852 - 1914) A COMPARISON of the FLUCTUATIONS in the PRICE of WHEAT and in the COTTON and SILK IMPORTS into GREAT BRITAIN. By J. H. POYNTING, M.A., late Fellow of Trinity College, Cambridge; Professor of Physics, Mason College, Birmingham.

[Read before the Statistical Society, 15th January, 1884. Sir RAWSON W. RAWSON, K.C.M.G., C.B., a Vice-President, in the Chair.]





## Amplitude distribution is not enough to describe a time-variant SP



#### **Autocorrelation**

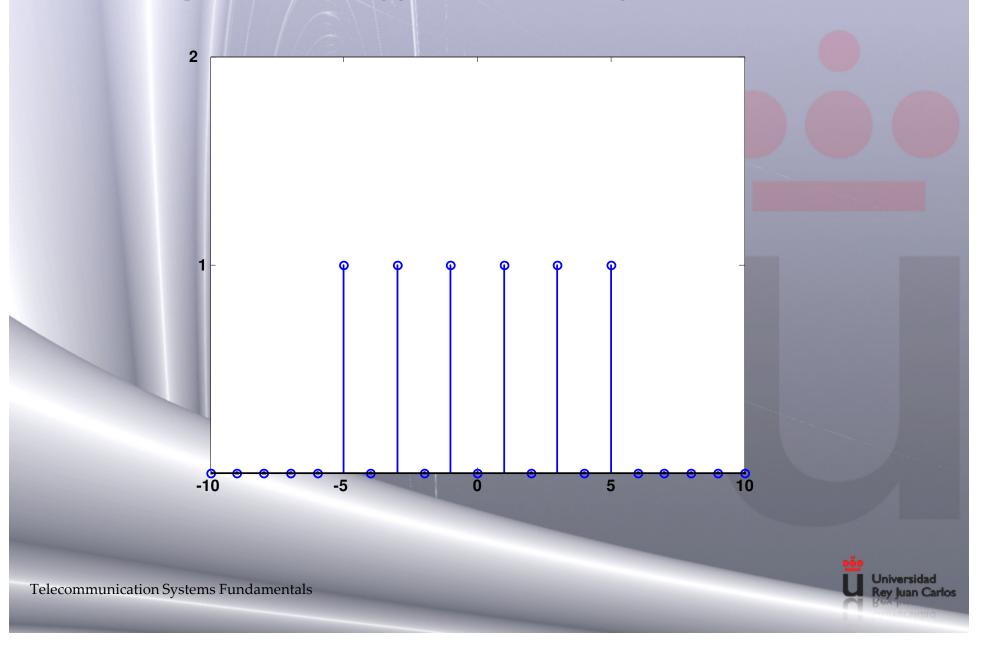
- Many power-defined signals (time-unbounded) exhibit repetition patterns. Although such signals are not periodic, they have some periodicity on their amplitude distribution. They are quasi-periodic
- How can we study such signals?
- An approach to analyze quasi-periodic patterns is to check the likeness between the signal and a delayed version of itself
- The autocorrelation function describes the likeness of a signal with a delayed version of itself. Therefore, we can identify quasi-periodic patterns by computing the signal autocorrelation

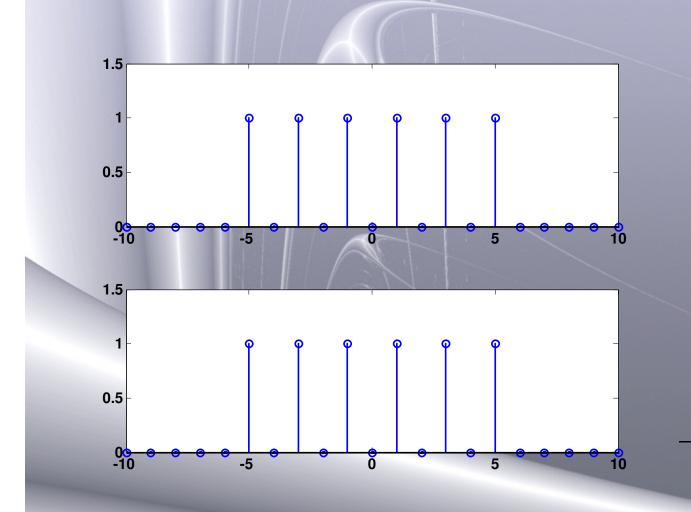


#### **Autocorrelation**

- To measure likeness between a given signal and a delayed version of itself we use the inner product of both signals. So, autocorrelation is defined that way.
- The likeness measurement (inner product) is defined in different way for power-defined and energy-defined signals
- Calculation of inner product depends on the available information of the signal
  - If time description of realizations is available, we can compute inner product as time average
  - If statistical information is available, inner product will be computed as statistical average





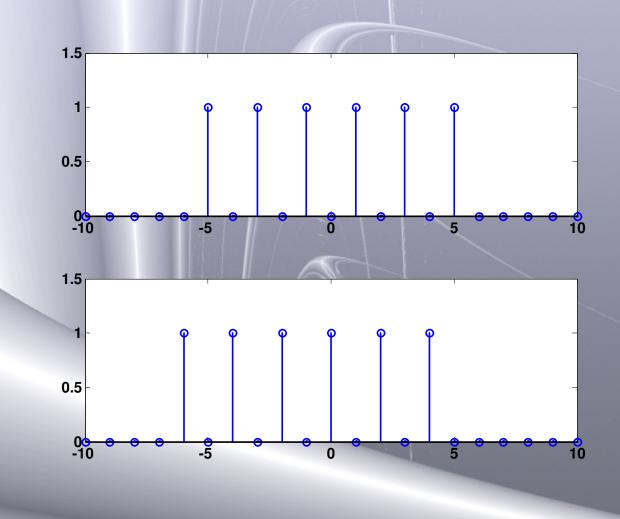


x(-5)x(-5) = 1

...

- x(-4)x(-4) = 0
- x(-3)x(-3) = 1
- x(-2)x(-2) = 0
- x(-1)x(-1) = 1
- $\mathbf{x}(0)\mathbf{x}(0) = \mathbf{0}$
- x(1)x(1) = 1
- x(2)x(2) = 0
- x(3)x(3) = 1
- $\Sigma x(n)x(n) = 6$

...



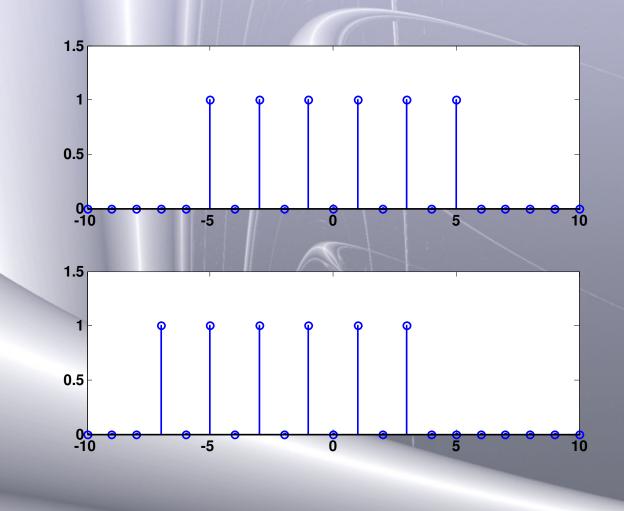
x(-5)x(-4) = 0

...

- x(-4)x(-3) = 0
- x(-3)x(-2) = 0
- x(-2)x(-1) = 0
- x(-1)x(0) = 0
- x(0)x(1) = 0
- x(1)x(2) = 0
- x(2)x(3) = 0
- x(3)x(4) = 0
- $\Sigma x(n)x(n+1) = 0$

. . .





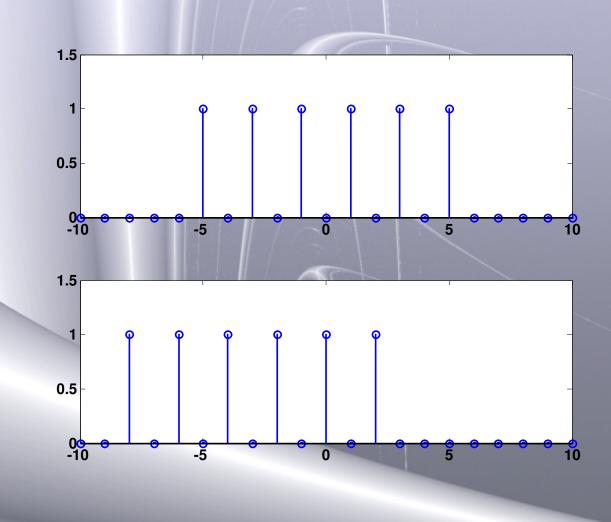
x(-5)x(-3) = 1

. . .

- x(-4)x(-2) = 0
- x(-3)x(-1) = 1
- x(-2)x(0) = 0
- x(-1)x(1) = 1
- x(0)x(2) = 0
- x(1)x(3) = 1
- x(2)x(4) = 0
- x(3)x(5) = 1
- $\Sigma x(n)x(n+2) = 5$

. . .





x(-5)x(-2) = 0

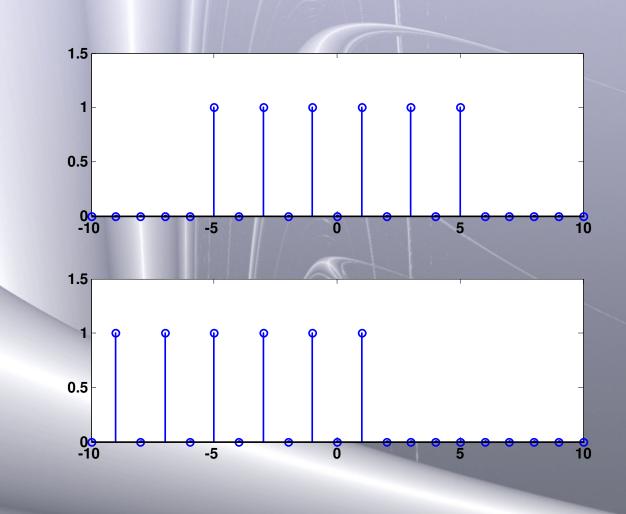
. . .

- x(-4)x(-1) = 0
- x(-3)x(0) = 0
- x(-2)x(1) = 0
- x(-1)x(2) = 0
- x(0)x(3) = 0
- x(1)x(4) = 0
- x(2)x(5) = 0
- x(3)x(6) = 0

 $\Sigma x(n)x(n+3) = 0$ 

. . .





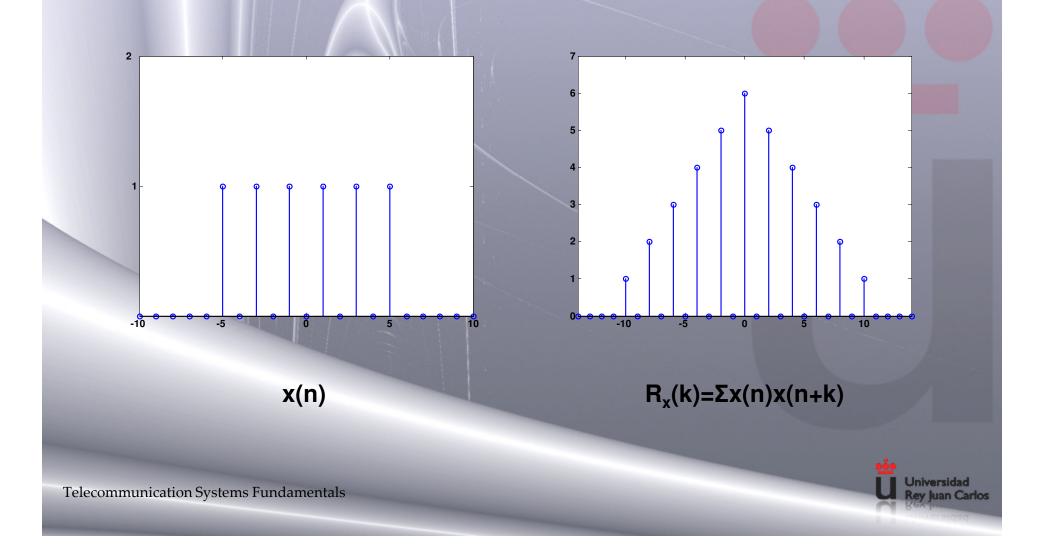
x(-5)x(-1) = 1

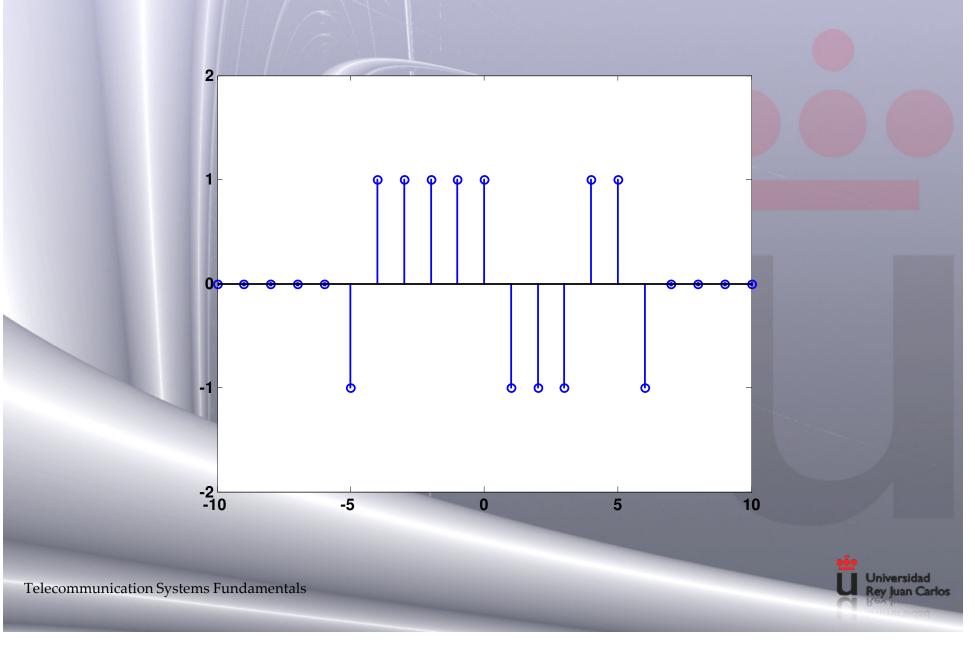
...

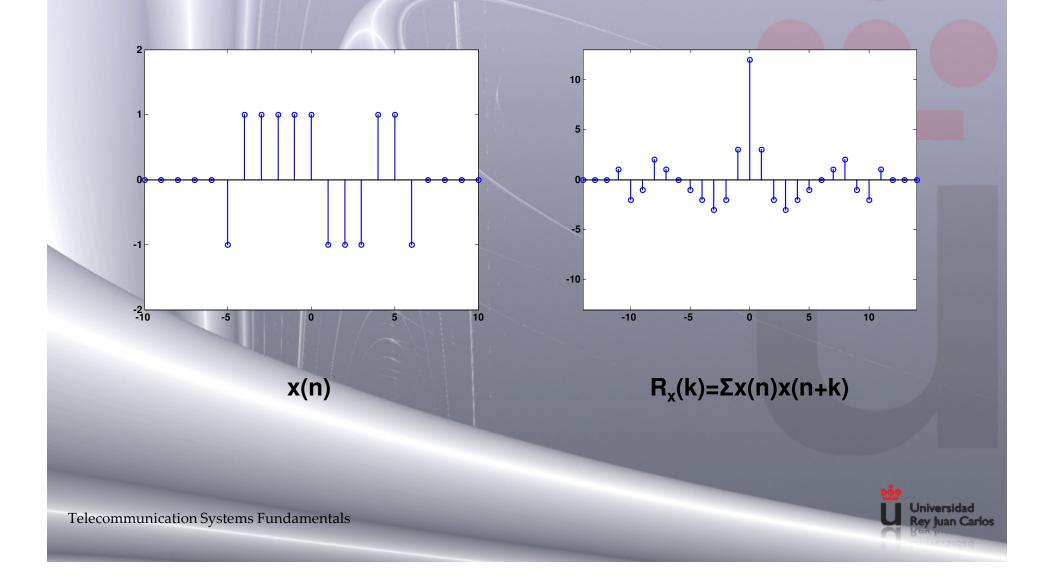
- x(-4)x(0) = 0
- x(-3)x(1) = 1
- x(-2)x(2) = 0
- x(-1)x(3) = 1
- $\mathbf{x}(0)\mathbf{x}(4) = \mathbf{0}$
- x(1)x(5) = 1
- x(2)x(6) = 0
- x(3)x(7) = 0
- $\Sigma x(n)x(n+3) = 4$

. . .









#### **Autocorrelation for Energy-Defined Signals**

 If x[n] is a discrete signal energy-defined, its autocorrelation function R<sub>x</sub>[k] is defined as:

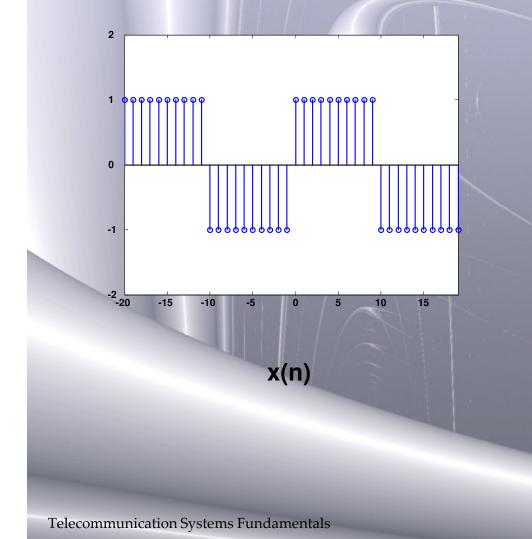
$$R_{\mathbf{x}}[k] = \sum_{n=-\infty}^{\infty} x[n]x[n-k]$$
$$= x[k] * x[-k]$$

 If x(t) is a continuous-time signal energy-defined, its autocorrelation function R<sub>x</sub>(t) is defined as:

$$R_{\mathbf{x}}(\tau) = \int_{-\infty}^{\infty} x(t) x(t-\tau) dt$$
$$= x(\tau) * x(-\tau)$$



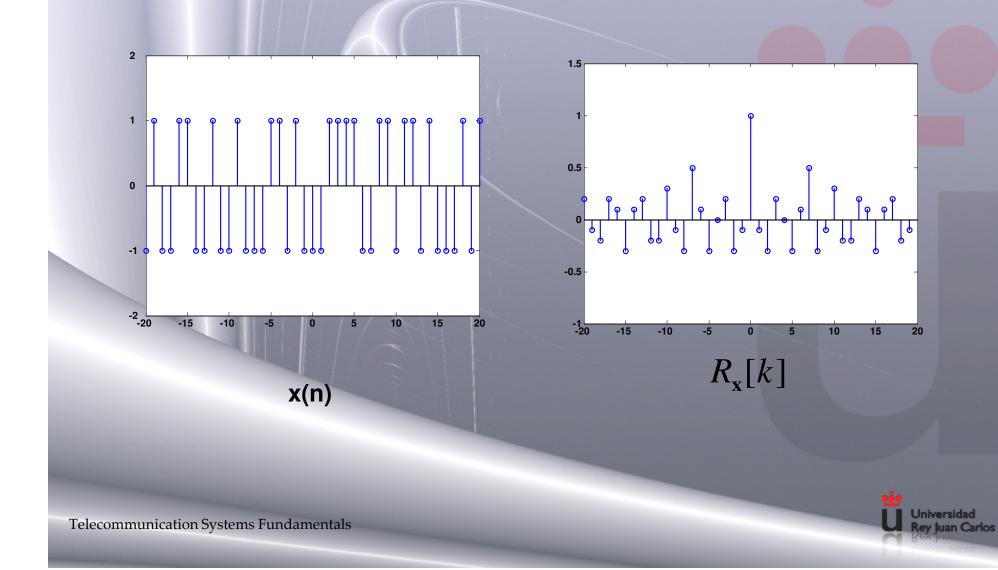
## **Example 3: Power-Defined Signal**







## **Example 4: Power-Defined Signal**



#### **Autocorrelation for Power-Defined Signals**

 If x[n] is a discrete signal power-defined, its autocorrelation function R<sub>x</sub>[k] is defined as:

$$R_{\mathbf{x}}[k] = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} x[n]x[n-k]$$

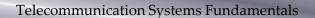
 If x(t) is a continuous-time signal power-defined, its autocorrelation function R<sub>x</sub>(t) is defined as:

$$R_{\mathbf{x}}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t-\tau) dt$$



## Homework

• Compute the autocorrelation of:  $x(t) = A\cos(2\pi ft)$ 





#### **Autocorrelation Summary**

- The autocorrelation function is a measurement of the selflikeness of a signal – in other words, the autocorrelation gives information about the likeness of a signal with itself but delayed
- Therefore, the autocorrelation function summarizes the time behavior of a signal
- Mathematically, the autocorrelation function is a projection (inner product) of a signal against a delayed version of itself with all possible values of delay. Consequently, the maximum of the autocorrelation function is at delay equal to zero – the likeness of a signal with itself – its power or energy



## **Autocorrelation Properties**

- Autocorrelation definition is different for energy-defined and power-define signals.
- In both cases, autocorrelation measures signal likeness to delayed version of itself, referring this likeness to its maximum value which happens at delay equal to zero.
- For energy-defined signals

 $R_{\mathbf{x}}(0) = E_{x}$ 

And for power-defined signals

$$R_{\mathbf{x}}(0) = P_{\mathbf{x}}$$



## **Autocorrelation Properties**

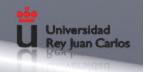
Autocorrelation function satisfies:

• And for the particular case of periodic signals, it holds that:

 $R_{\mathbf{x}}(L \cdot T) = R_{\mathbf{x}}(0)$ 



where L is any integer number and T is the signal period



**Telecommunication Systems Fundamentals** 

 $R_{\rm x}$  (

## **Autocorrelation Properties**

- Symmetry:  $R_X(\tau)$  is and even signal:  $R_X(\tau) = R_X(-\tau)$ .
- Maximum:  $R_X(\tau)$  maximum is for  $\tau = 0$  (and coincides with energy/power of the signal),  $|R_X(\tau)| \le R_X(0)$ .
- Periodicity: if for a give value of T, it holds that  $R_X(T) = R_X(0)$ , then it also holds that  $R_X(kT + \tau) = R_X(0 + \tau)$  for any integer value of k.
- Integrability: the autocorrelation function of any signal (except the periodic signals) can be integrated – i.e. it is a energydefined signal itself.



## **Autocorrelation of Stochastic Processes**

- Recall the two viewpoints for SP:
  - A set of signals with common properties, although signals itself are not identical point-by-point
  - A physical mechanism that generates sets of signals according to a stochastic pattern
- In any case, to describe an SP the set of signals has to be described, but a single signal can not be described.
- So, how can we define the autocorrelation of a SP?



## Intuition

- Let's assume, as starting point, that we have a set of signals and we select one of them by a random mechanism.
- The autocorrelation of one of these realizations, x<sub>1</sub>(t), can be computed as its time average using next expression:

$$R_{\mathbf{x}\mathbf{x},1}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x_1(t) x_1(t-\tau) dt$$

$$X_{1}(t) \rightarrow R_{xx,1}$$

$$X_{3}(t) \rightarrow R_{xx,3}$$

$$X_{3}(t) \rightarrow R_{xx,3}$$

$$X_{3}(t) \rightarrow R_{xx,3}$$

 $X_2(t$ 



#### Intuition

- But if we compute autocorrelation in such a way, we are not computing the autocorrelation of the SP, but the one of a particular signal (realization)
- So, in order to compute the autocorrelation of the SP, we should average over all possible realizations:

$$E_{\mathbf{x}}(\tau) = E \left[ \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t-\tau) dt \right]$$
$$= \lim_{T \to \infty} E \left[ \frac{1}{2T} \int_{-T}^{T} x(t) x(t-\tau) dt \right]$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E \left[ x(t) x(t-\tau) \right] dt$$



#### Intuition $\rightarrow$ Definition

• If the expected value does not depend on the time, then:

$$R_{\mathbf{x}}(\tau) = E\left[x(t)x(t-\tau)\right]\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}dt$$
$$= E\left[x(t)x(t-\tau)\right]$$

 The autocorrelation function for a SP is noted as R<sub>X</sub>(t<sub>1</sub>,t<sub>2</sub>), and its definition is

 $R_X(t_1,t_2) = E [X(t_1) X(t_2)]:$ 

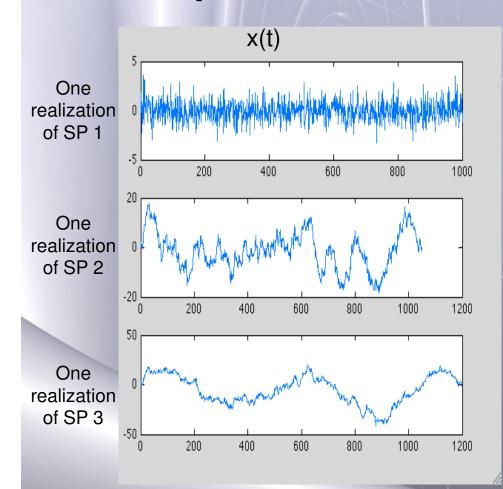
$$R_{X}(t_{1},t_{2}) = E[X(t_{1})X(t_{2})]$$
  
=  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}x_{2}f_{X(t_{1}),X(t_{2})}(x_{1},x_{2})dx_{1}dx_{2}$ 

Which is a measurement of the likeness between Random Variables obtained in two instants of the SP, X(t<sub>1</sub>) and X(t<sub>2</sub>). i.e. R<sub>X</sub>(t<sub>1</sub>,t<sub>2</sub>) is a measurement of the likeness (variation) of the signal in two different instants of time t<sub>1</sub> and t<sub>2</sub>.

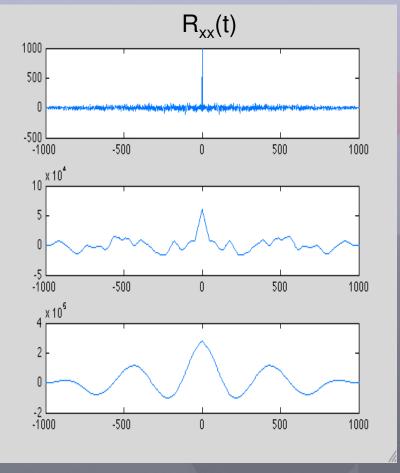
**Jniversidad** 

ev Juan Carlos

#### **Example: Rxx based on one SP realization**



SP 3 more correlated than SP 2, which is more correlated than SP 1 (uncorrelated)

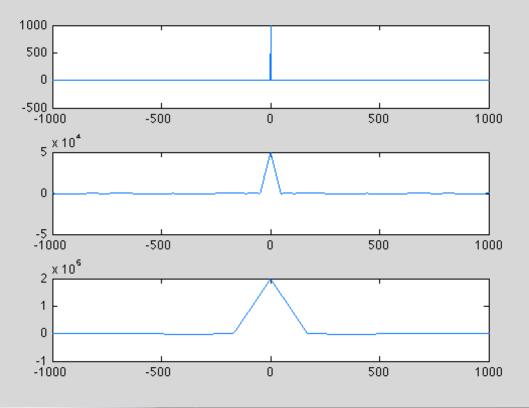


Autocorrelations obtained using only the single realization



# Example: Rxx averaging over "all" (many) SP realizations

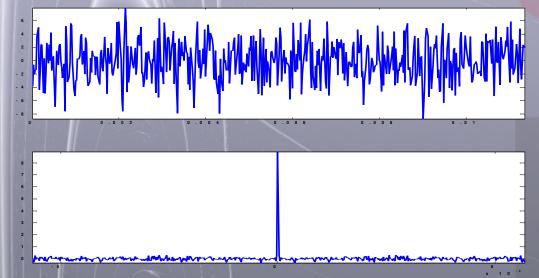
SP 3 more correlated than SP 2, which is more correlated than SP 1 (uncorrelated)





## **Uncorrelated Processes**

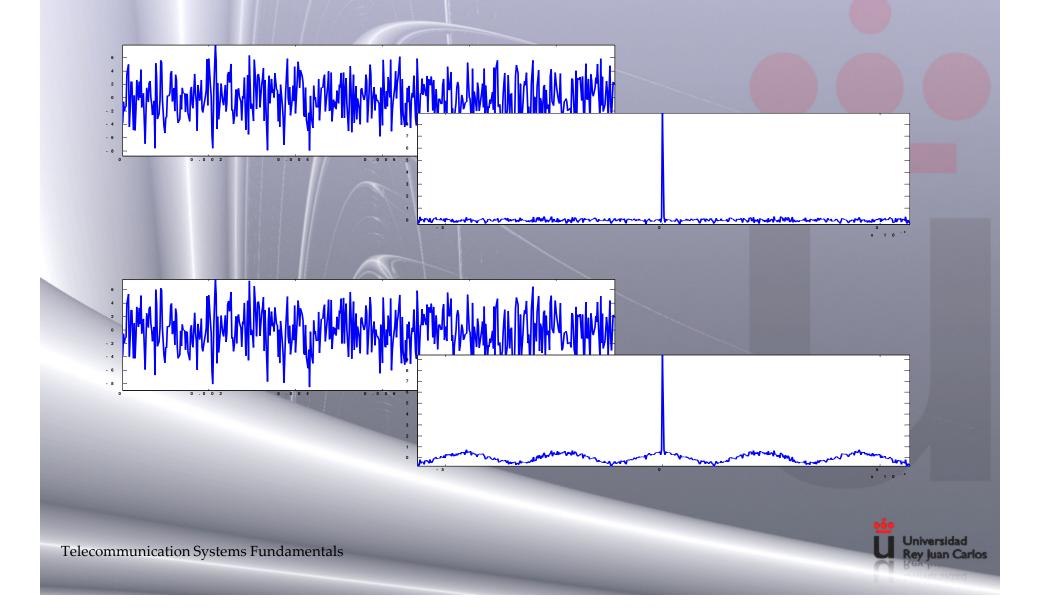
 A SP is uncorrelated if R<sub>X</sub>(t<sub>1</sub>,t<sub>2</sub>) = 0, for any t<sub>1</sub> and t<sub>2</sub> such that t<sub>1</sub> ≠ t<sub>2</sub>.



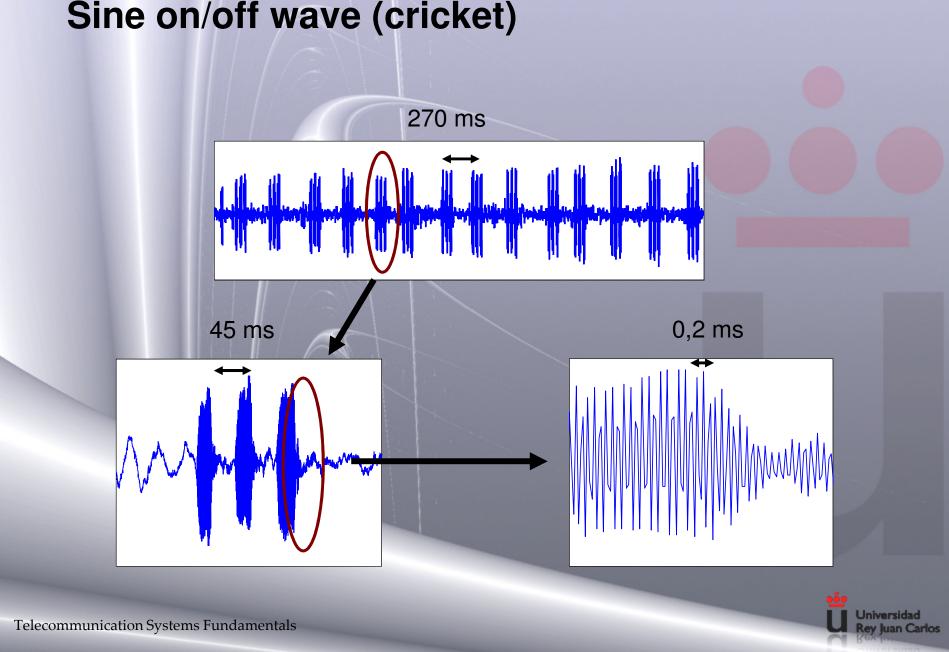
 Intuitively, there is not "likeness" between samples at different times of the process



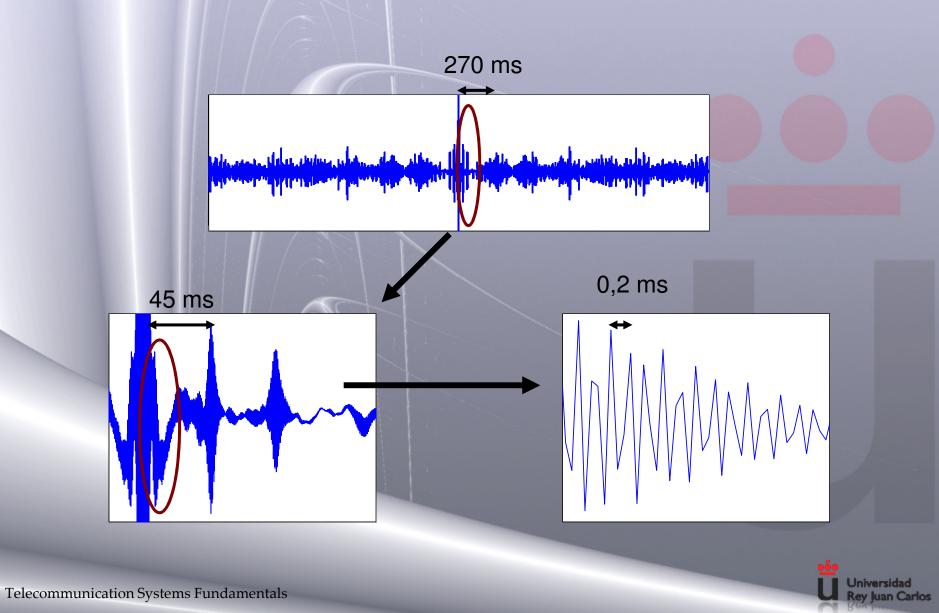
## **Noise in Telecommunications often is Uncorrelated**



## Sine on/off wave (cricket)







#### Summarizing

- Autocorrelation is a measurement of the likeness between a signal and a delayed version of itself
- Each realization of a SP may be quite different and computing any statistic on it will mislead to totally incorrect information. Autocorrelation has to average all (many) realizations, i.e. compute the expected value
- Peak values in the autocorrelation function hints about repetition patterns

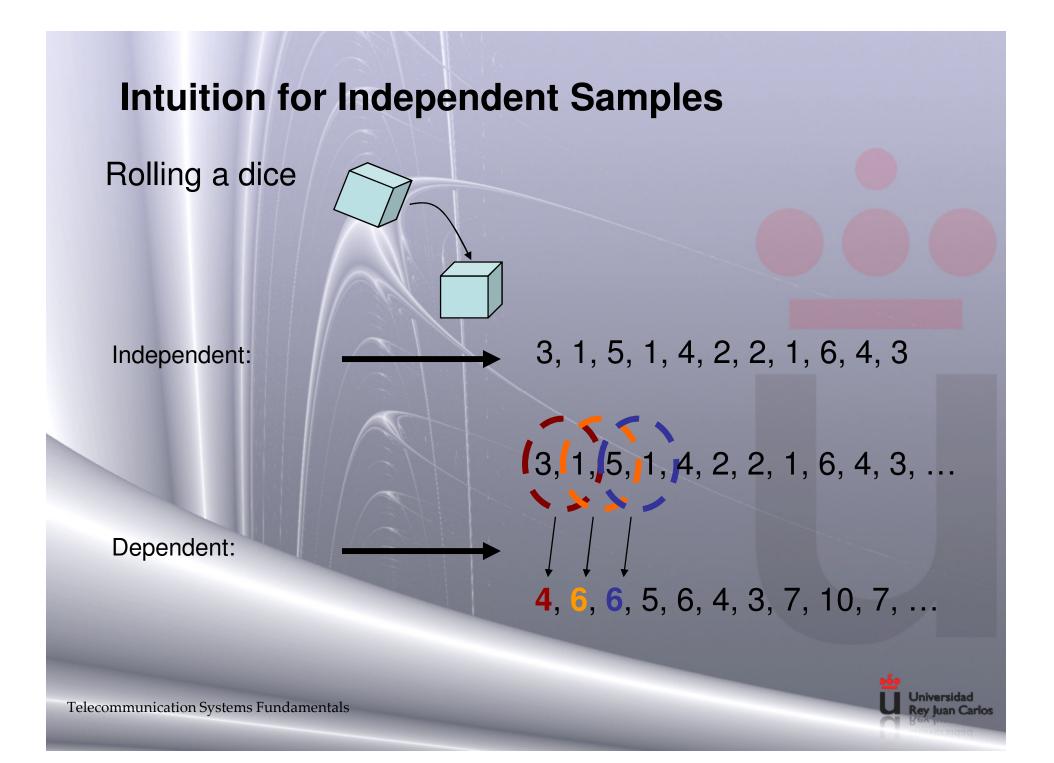


#### **Statistical Independence**

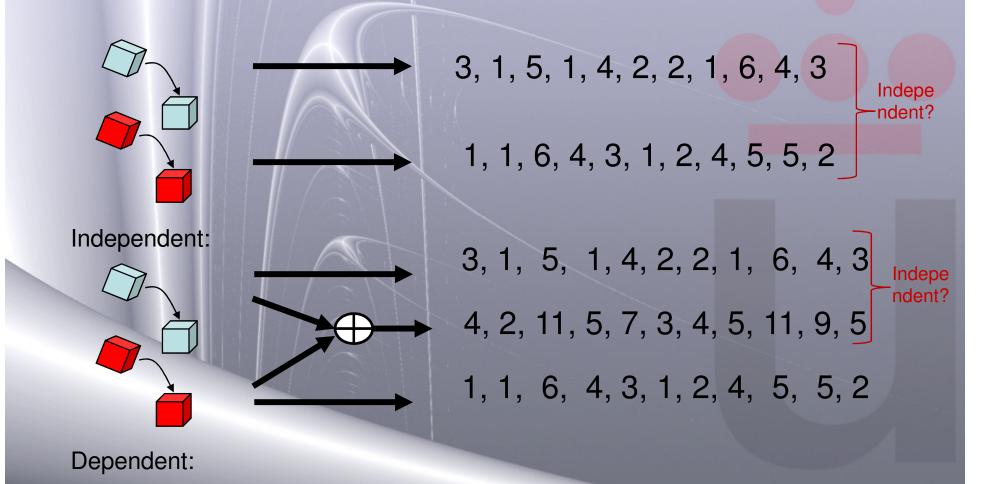
- Two scenarios:
  - Independence of the samples of a signal
  - Independence of two signals
- Intuitively, two samples are independent if the mechanisms that generates them are also independent
- Formally, two Random Variables, X<sub>1</sub> and X<sub>2</sub>, are independent if, and only if,

$$f_{X_1X_2}(x_1, x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2)$$





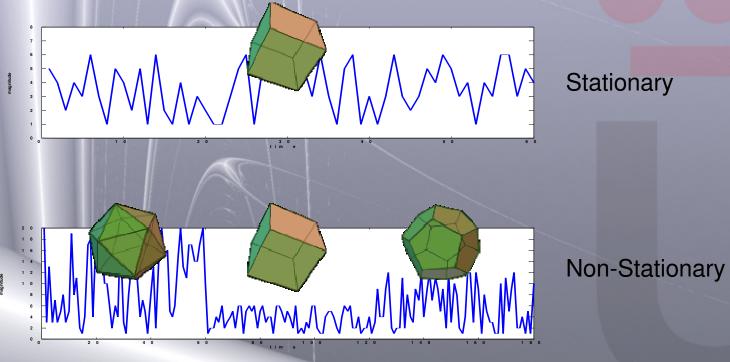
#### **Intuition for Independent Signals**





#### **SP and Stationarity**

 An SP is stationary if its statistics do not depend on time





#### **Stationary Stochastic Processes**

- When arriving to practical SP, two types of stationarity can be defined:
  - Strict (Sense) Stationary Processes (SSP). The pdf of the process does not change with time delay  $\Delta$

$$f_X(t_1, t_2, ..., t_n) = f_X(t_1 + \Delta, t_2 + \Delta, ..., t_n + \Delta)$$

- Wide Sense Stationary Processes (WSSP), those that satisfy the two following restrictions:
  - The mean value of the process, E{X(t)}, does not varies with time

$$R_X(t_1, t_2) = E\left[X(t_1)X(t_2)\right]$$

• The autocorrelation  $R_X(t_1,t_2)$  depends only on the time difference  $\tau = t_1 - t_2$ . Thus, for WSSP we compute the autocorrelation as  $R_X(\tau)$ .

 $R_{\mathbf{x}}(\tau) = E[x(t)x(t-\tau)]$ 

• An SSP is also WSSP, but the opposite is not true



#### **SP and Ergodicity**

• A Stochastic Process is Ergodic if its statistics can be computed as time average of one of its realizations

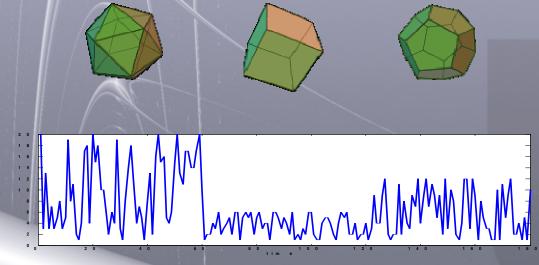
$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} g(x(t)) dt = E(g(X(t)))$$

- Ergodicity implies stationarity. Any ergodic process is stationary
- However, stationarity does not imply ergodicity
- Example: roll a dice infinite times



#### **Example 7**

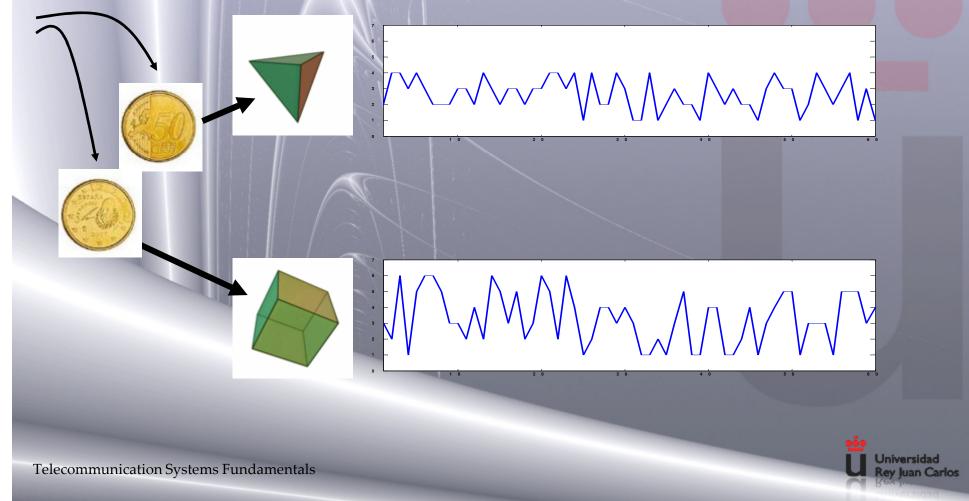
• The following SP is not stationary, and therefore it is not ergodic either.





#### **Example 8**

 The following Strict Sense Stationary Process is not Ergodic. Why?



#### **Time Averaging and Statistical Expected Value**

- Time average and expected value returns the same value only for ergodic SP
- As example, if we assume that human voice signal corresponds to a ergodic SP, then we can estimate statistics from time averaging only one recorded piece of voice, and assume that those values coincide with the statistics of any voice signal



#### **Time Averaging and Statistical Expected Value**

$$\left\langle x(t) \right\rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$
$$\mathbf{\hat{f}}$$
$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$\left\langle x^{2}(t)\right\rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^{2}(t) dt$$
$$\mathbf{1}$$

$$R_{\mathbf{x}}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t-\tau) dt$$

$$R_X(\tau) = E(X(t)X(t-\tau))$$

Universidad Rey Juan Carlos

#### **SP classification**

**Stationary** (power defined signals)

**Ergodic** (power defined signals)

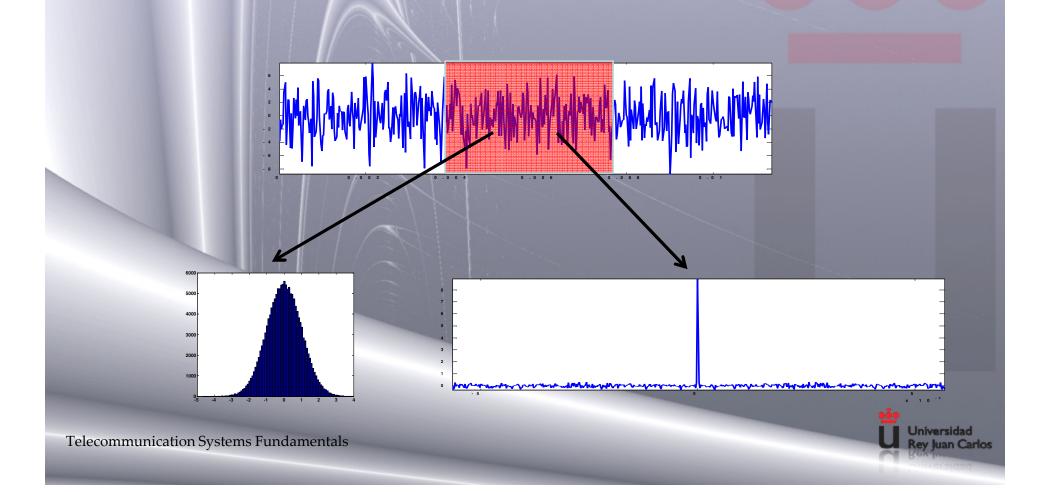
Non-Stationary

(both power and energy defined signals)



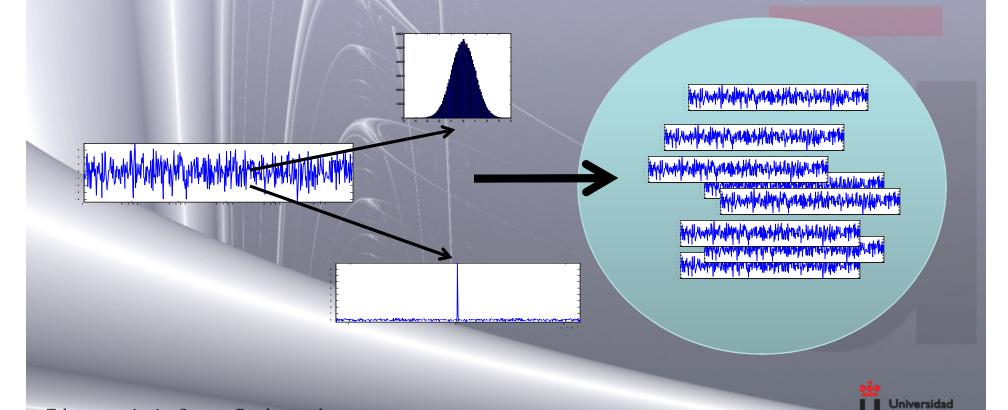
## What is the practical meaning of Stationarity?

· We can characterize one realization from a segment of it



## What is the practical meaning of Ergodicity?

· We can characterize the SP from a realization of it



ey luan Carlos

#### **Cross-Correlation**

- If autocorrelation is a measurement of how a signal looks like itself delayed; the cross-correlation function provides information about likeness of two signals (delaying one respect the other)
- Depending of the type of signals, cross-correlation can be defined for:
  - Cross-Correlation of Energy Defined signals
  - Cross-Correlation of Power Defined signals
  - Cross-Correlation of one Energy Defined signal and one Power Defined signal



#### **Cross-Correlation of two Energy Defined Signals**

 Let x[n] and y[n] be two energy defined discrete signals (or one Energy defined and the other Power defined). Their crosscorrelation function is defined as:

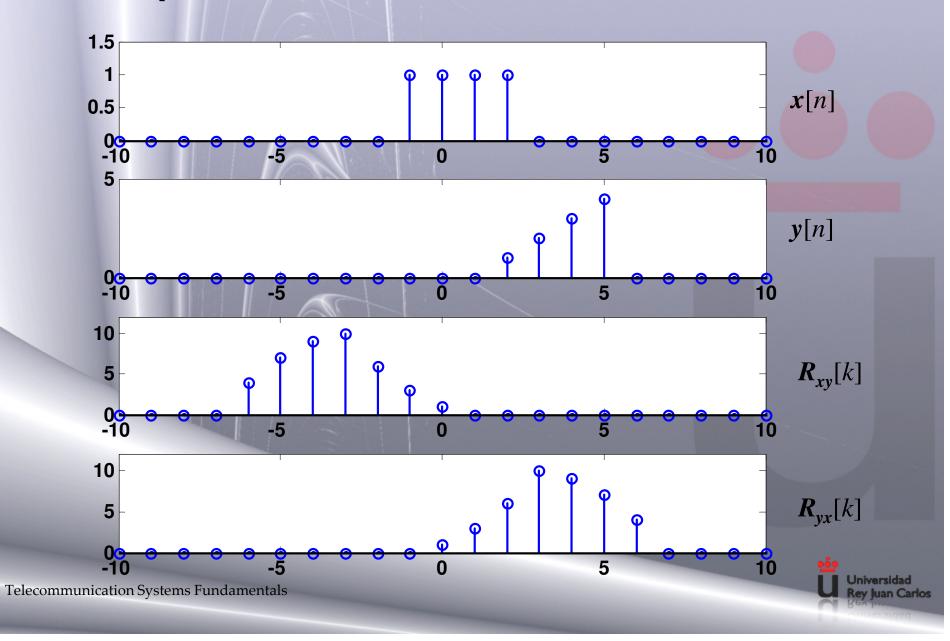
$$R_{xy}[k] = \sum_{n=-\infty}^{\infty} x[n]y[n-k]$$
$$= x[k] * y[-k]$$

If x(t) and y(t) are two energy defined continuous signals (or one **Energy defined and the other Power defined**). Their cross-correlation function is defined as:

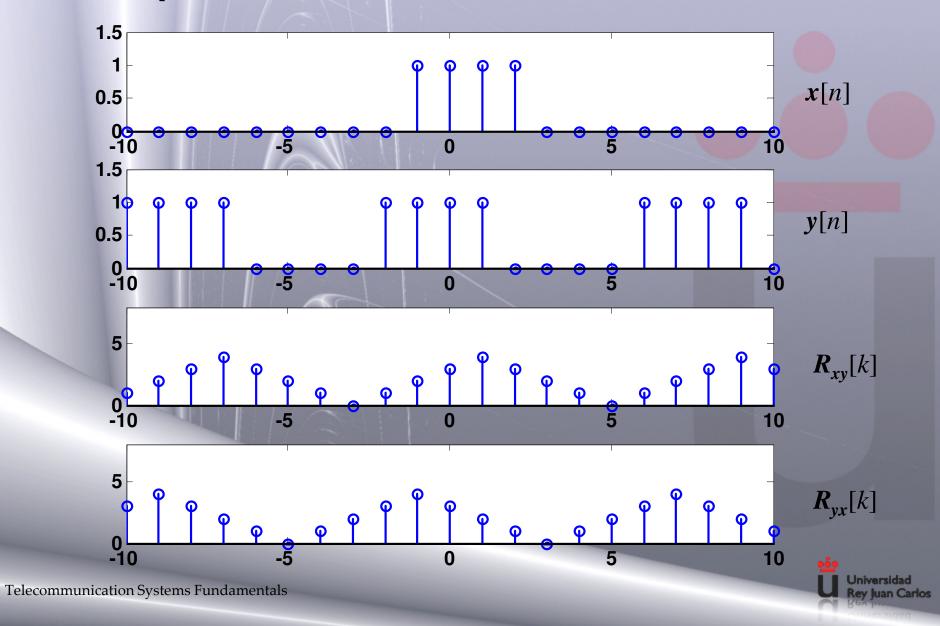
$$R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y(t-\tau)dt = x(\tau) * y(-\tau)$$



# **Example 1**



# Example 2



#### **Cross-Correlation of two Power Defined Signals**

Let x[n] and y[n] be two power defined discrete signals.
 Their cross-correlation function, R<sub>xv</sub>[k], is defined as:

$$R_{xy}[k] = \lim_{n \to \infty} \frac{1}{2n+1} \sum_{n=-\infty}^{\infty} x[n]y[n-k]$$

Let x(t) and y(t) be two power defined continuous signals. Their cross-correlation function, R<sub>xy</sub>(t), is defined as:

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) y(t-\tau) dt$$



#### **Cross-Correlation from a Statistical Viewpoint**

 Cross-Correlation of two stochastic processes can be defined also using their joint-pdf:

$$R_{XY}(t_1, t_2) = E\left[X(t_1)Y(t_2)\right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(t_1), Y(t_2)}(x, y) dx dy$$

• When both processes are stationary, then it holds that:

$$R_{XY}(\tau) = E \left[ X(t) Y(t - \tau) \right]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(t), Y(t - \tau)}(x, y) dx dy$$



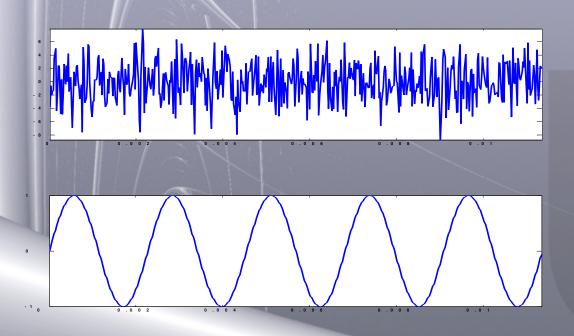
#### **Cross-Correlation Properties**

- $R_{xy}(\tau) = R_{yx}(-\tau).$
- $P_{xy} = R_{xy}(0) = R_{yx}(0)$  can be understood as the cross-power between x(t) and y(t).
- The maximum of  $R_{xy}(\tau)$  points to the time delay at which both signals exhibit their maximum likeness



#### **Uncorrelated Processes**

- Two SP are uncorrelated if  $R_{xy}(T) = 0$  for every value of **T**
- It can be proven that if two SP are independent and at least one of then has zero mean, then they are uncorrelated





#### **Sum of Signals**

Autocorrelation of the sum of two signal can be expressed as:

$$R_{\mathbf{x}+\mathbf{y}}(\tau) = R_{\mathbf{x}}(\tau) + R_{\mathbf{y}}(\tau) + R_{\mathbf{x}\mathbf{y}}(\tau) + R_{\mathbf{y}\mathbf{x}}(\tau)$$

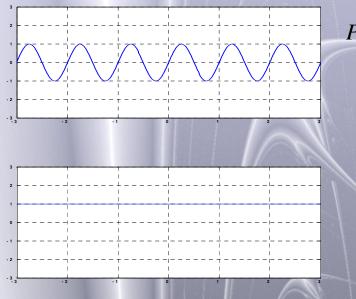
And particularizing for  $\tau=0$ , the power of the sum is:

$$P_{\mathbf{x}+y} = R_{\mathbf{x}+y}(0)$$
  
=  $R_{\mathbf{x}}(0) + R_{y}(0) + R_{xy}(0) + R_{yx}(0)$   
=  $P_{\mathbf{x}} + P_{y} + P_{xy} + P_{yx}$ 

Important to note that only when the two processes are uncorrelated, the power of the sum is the sum of the powers



# Sine Signal plus DC



$$P_{\sin} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A^{2} \sin^{2}(ft) dt$$
  

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left[ -\frac{1}{2} A^{2} \cos(2ft) - \frac{1}{2} A^{2} \cos(ft - ft) \right] dt$$
  

$$= \lim_{T \to \infty} \frac{1}{2T} 2T \frac{1}{2} A^{2} = \frac{A^{2}}{2}$$
  

$$P_{con} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} B^{2} dt = B^{2}$$
  

$$P_{con+\sin} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} (B + A \sin(ft))^{2} dt$$
  

$$= \frac{A^{2}}{2} + B^{2}$$
  

$$= P_{con} + P_{\sin}$$

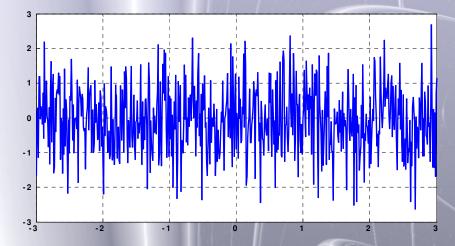
Universidad Rey Juan Carlos

Telecommunication Systems Fundamentals

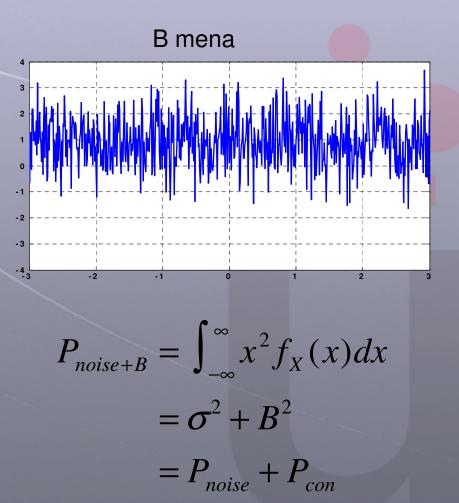
-2

## **Gaussian Noise**

Zero mean



$$P_{noise} = \int_{-\infty}^{\infty} x^2 f_X(x) dx$$
$$= \sigma^2$$





#### Why do we want to study the Spectrum?

- Cyclic processes are quite common in nature
  - Astronomy: lunar phases, planets orbits, solar storms, ...
  - Biology: heart beat,...
  - Physics: acoustic vibrations, electromagnetic waves, ...
- In communications, spectrum of the signal is of capital importance when designing and analyzing systems
- If a signal is deterministic, the Fourier Transform computes the spectrum, but what happen for Stochastic Processes?



#### **Energy Spectral Density**

 The Energy Spectral Density (ESD) of a energydefined signal is calculated as the Fourier Transform of its auto-correlation function:

 $G_X(f) = F\{R_X(\tau)\}$  $= F\{x(\tau) * x(-\tau)\}$  $= |X(f)|^2$ 

- For Discrete time signals ESD is defined in similar way



#### **Energy Spectral Density**

- The Energy Spectral Density describes how the energy is distributed along different frequencies
- So, the total signal energy can be calculated by integrating the ESD for all frequencies

 $E_{X} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$  $= \int_{-\infty}^{\infty} |X(f)|^{2} df$  $= \int_{-\infty}^{\infty} G_{X}(f) df$ 



#### **Power Spectral Density**

The Power Spectral Density (PSD) of a power-defined signal is calculated as the Fourier Transform of its auto-correlation function:

 $S_X(f) = F\{R_X(\tau)\}$ 

For Discrete time signals PSD is defined in similar way



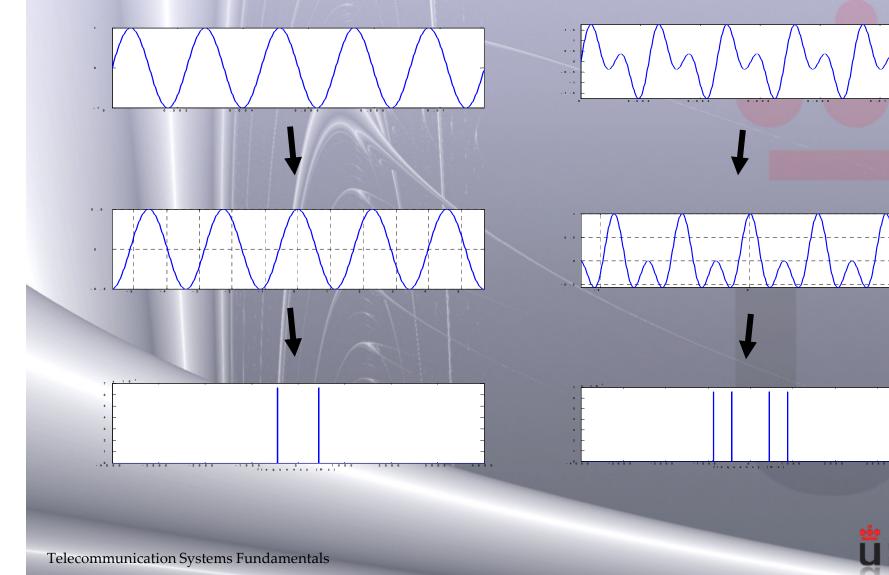
#### **Power Spectral Density**

- The Power Spectral Density describes how the power is distributed along different frequencies
- So, the total signal power can be calculated by integrating the PSD for all frequencies

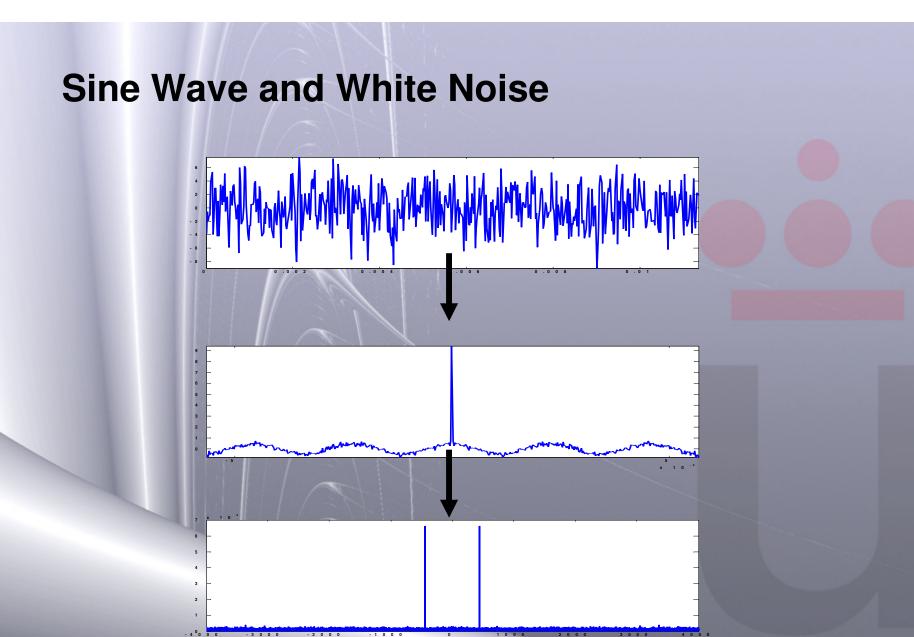
$$P_X = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
$$= \int_{-\infty}^{\infty} S_X(f) df$$



## Sine Wave and the Sum of two Sine Waves



Universidad Rey Juan Carlos



-1000 0 1000 frequency (Hz)

2 0 0

2 0 0

3 0 0 0

**Telecommunication Systems Fundamentals** 

Universidad Rey Juan Carlos

#### **PSD** properties

- **1. Symmetry**: PSDs are even functions,  $G_x(f)=G_x(-f)$  y  $S_x(f)=S_x(-f)$ .
- **2.** Sign: PSD is real-valued and No-Negative for any value of frequency f,  $G_x(f) \ge 0$ ,  $S_x(f) \ge 0$ .
- **3. Integrability:** Energy or Power can be calculated as the integral of the their Spectral Density



#### **Cross Spectral Density**

 Let be x(t) and y(t) two energy-defined signals which cross-correlation function is R<sub>xy</sub>(t). Their Cross Spectral Density is defined as the Fourier Transform of their cross-correlation function:

$$G_{xy}(f) = F\left\{R_{xy}(\tau)\right\}$$

 Analogously, if x(t) and y(t) are power-defined signals their cross spectral density is defined as:

 $S_{xy}(f) = F\left\{R_{xy}(\tau)\right\}$ 



#### **Sum of Signals**

• Spectral Density of a sum of signals satisfies the following relationship:

# $$\begin{split} S_{x+y}(f) &= F\left\{R_{x+y}(\tau)\right\} \\ &= F\left\{R_{x}(\tau) + R_{y}(\tau) + R_{xy}(\tau) + R_{yx}(\tau)\right\} \\ &= S_{x}(\tau) + S_{y}(\tau) + S_{xy}(\tau) + S_{yx}(\tau) \end{split}$$



#### **Summary of Spectral Density**

- Energy (or Power) Spectral Density describes how energy (or power) is distributed along frequencies
- Can be used for Stochastic Processes and deterministic signals
- In the case of SP, Spectral Density represents an statistical average of the process. One particular realization may have different spectrum
- Spectral Density of the sum of several signals can be calculated by computing the Spectral Density of each elementary signal and their cross spectral density



#### **Summary of Concepts in this Chapter**

- In this chapter we learned:
  - How to model a Stochastic Process
  - Different properties of SP: Independence, Stationarity, Ergodicity
  - How to compute the autocorrelation of a SP and its physical meaning
  - How to compute the Energy(Power) Spectral Density of a SP and its physical meaning

