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Section Objectives

To complete our introduction to the finite element method we now extend
our analysis of 2D boundary value problems to include those for which the
variable is a vector (u). The example we will use as a framework for the
developed techniques is classical linear elastostatics (which is
mathematically identical to Stokes Flow).

In this section we will:

Use the finite element method to approximate a 2-D BVP with a
vector field

Illustrate (for the final time) the (S)→ (W )→ (G )→ (M) process
to produce a finite-element approximation
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Mathematical Preliminaries
In order to get a weak form of the 2-D BVP with vector field it is necessary
to introduce the Euclidean decomposition of a general (non-symmetric)
2nd-rank tensor sij into symmetric and skew-symmetric components

sij = s(ij) + s[ij]

in which the symmetric part obeys the relationship s(ij) = s(ji), and the
skew-symmetric part obeys the relationship s[ij] = −s[ji ]. These symmetric
and skew-symmetric components are defined as

s(ij)
def
=

sij + sji
2

and s[ij]
def
=

sij − sji
2

We now consider the multiplication of a non-symmetric tensor sij and a
symmetric tensor tij

Visualizer

Demonstrate that sij tij = s(ij)tij
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Classical Linear Elastostatics
The physical problem which we will use as the framework for solving a
BVP with a vector variable is classical linear elastostatics. The analysis is
valid for both two and three spatial dimensions, although we will focus
exclusively on the former. We take dummy variables

i , j , k = 1, · · · , nsd

where nsd is the number of spatial dimensions. We then define

σij (Cartesian components of the Cauchy stress tensor)
ui (displacement vector)
li (prescribed body force per unit volume)
εij (infinitesimal strain tensor)

The infinitesimal strain tensor is defined as the symmetric component of
the gradient of the displacements

εij = u(i ,j)
def
=

ui ,j + uj ,i
2
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Classical Linear Elastostatics: Strong Form
The stress and strain tensors are related by a constitutive equation – in
this case Hooke’s Law – according to

σij = cijklεkl

in which cijkl are the elastic coefficients, which are themselves functions of
x if the continuum material is not homogeneous. It is a property of the
elastic coefficient tensor that it is symmetric, i.e. cijkl = cklij .

The strong form of the classical linear elastostatics problem is

(S)


σij ,j + li = 0 in Ω (Equilibrium)

ui = gi on Γgi (prescribed boundary displacement)
σijnj = hi on Γhi (prescribed boundary traction)

where σij is defined in terms of the variable ui by

σij = cijkl

(
uk,l + ul ,k

2

)
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Classical Linear Elastostatics: Weak Form

We obtain the weak form of the problem in a similar fashion to previous
examples: we require the integral of the weighted residual over the domain
to be equal to zero, and we integrate by parts to result in symmetric
functions.

Visualizer

Show that the weak form of the classical linear elastostatics problem is, for
ui = gi on Γgi

(W) a(w,u) = (w, l) + (w,h)Γ

where

a(w, u) =

∫
Ω

w(i,j)cijklu(k,l), (w, l) =

∫
Ω

wi lidΩ, (w, h)Γ =

nsd∑
i=1

(∫
Γhi

wihidΓ

)
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Matrix/Vector Notation

If subscript notation doesn’t agree with you, the derived symmetric bilinear
functions in the weak form may be expressed in matrix/vector notation

Visualizer

Show the symmetric bilinear function a(w,u) can be expressed as

a(w,u) =

∫
Ω
ε(w)TDε(u)dΩ
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Galerkin Form

We proceed as before, accounting for the vectorial nature of the variables.
Sh and Vh are finite-dimensional approximations to the trial solution space
S and the variation space V respectively.

We require that wh ∈ Vh (approximately) satisfies wi = 0 on Γgi .

We also require that members of Sh can be decomposed to uh = vh + gh,
where vh ∈ Vh, and gh approximately satisfies ui = gi on Γgi .

The Galerkin form of the problem may therefore be expressed as

(G) a(wh, vh) = (wh, l) + (wh,h)Γ − a(wh, gh)
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Approximation Functions

We first redefine the ID array to include the fact that each node has
multiple degrees of freedom i .

ID(i ,A) =

{
P if A ∈ η − ηgi
0 if A ∈ ηgi

where A is the global node number and P is the global equation number.

We make the following approximations

vhi =
∑

A∈η−ηgi

NAdiA

gh
i =

∑
A∈ηgi

NAgiA
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Approximation Functions continued

We can express these components of the approximate solution in vector
notation with reference to the Euclidean vector basis, i.e. in 2 dimensions

e1 =

{
1
0

}
e2 =

{
0
1

}

giving
vh = vhi ei gh = gh

i ei

and likewise

wh = wh
i ei where wh

i =
∑

A∈η−ηgi

NAciA
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Galerkin Form

We then substitute these approximations into the Galerkin form of the
problem (G) to obtain

a

 ∑
A∈η−ηgi

NAciAei ,

ndof∑
j=1

 ∑
B∈η−ηgi

NBdjBej

 =

 ∑
A∈η−ηgi

NAciAei , l

+

 ∑
A∈η−ηgi

NAciAei , h


Γ

−a

 ∑
A∈η−ηgi

NAciAei ,

ndof∑
j=1

 ∑
B∈η−ηgi

NBgjBej


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Towards the Matrix Form

By invoking the symmetry and bilinearity of the chosen functions, this may
be re-expressed as

for A ∈ η − ηgi and 1 ≤ i ≤ nsd

ndof∑
j=1

 ∑
B∈η−ηgi

a(NAei , NBej)djB

 =

(NAei , l) + (NAei ,h)Γ −
ndof∑
j=1

∑
B∈ηgj

a(NAei , NBej)gjB


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Matrix Form

This equation may be concisely expressed as

Kd = F

or
[KPQ ]{dQ} = {FP}

where

KPQ = a(NAei ,NBej)

FP = (NAei , l) + (NAei ,h)Γ −
ndof∑
j=1

∑
B∈ηgi

a(NAei ,NBej)gjB


P = ID(i ,A)

Q = ID(j ,B)
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Summary

We will not cover it in this course, but a similar assembly operator
algorithm to the scalar variable case may readily be derived.
In this section we have:

Demonstrated the finite element approximation for a 2-D BVP with
vector field variable; specifically the classical linear elastostatics
problem

Completed our introduction to the finite element method from
mathematical first principles

You can now, for problems with up to three spatial dimensions:
I Derive an appropriate finite element approximation
I Discretize the global domain into repeating locally-defined finite

elements
I Assemble global matrices and vectors from these local finite elements

via mapping and an appropriate algorithm
I Account time for time dependence if desired
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