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Section Objectives

In this section we illustrate how the finite element method may be used to
tackle problems which vary in the temporal in addition to the spatial
domain. Although we will focus on a 1-D implementation, the same
techniques are readily extended to problems in additional spatial
dimensions.

In this section we will:

Use the finite element method to approximate a 1-D parabolic PDE:
the 1-D Heat Equation

Illustrate (yet again) the (S)→ (W )→ (G )→ (M) process

Propose a possible family of solution algorithms
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Preliminaries

The example problem which we will use to illustrate this is the parabolic
heat equation. This equation is derived from Fourier’s Law (which was
introduced when we considered the linear heat conduction problem) and
the principle of conservation of energy.

We define

qi = −κiju,j (Cartesian components of the heat flux vector)
u(x, t) (temperature)
κij(x) (conductivity)
ρ (density)
c (heat capacity)
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Strong Form of the Heat Equation

The strong form (S) of the heat equation is expressed as

(S)

ρcu,t + qi ,i = l on Ω×]0,T [
u = g on Γg×]0,T [ (Dirichlet)
−qini = h on Γh×]0,T [ (Neumann)
u(x, 0) = u0(x) x ∈ Ω

where u,t denotes the derivative of u with respect to time.

As before, the first step is to convert this strong form to a weak integral
form.
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Weak Form of the Heat Equation
As before V is the space of weighting functions which do not depend on
time.

The space of trial solutions S is, however, a function of time

S =
{
u(·, t)|u(x, t) = g(x, t), x ∈ Γg , u(·, t) ∈ H1(Ω)

}
Visualizer

Show that the weak form of the heat equation is

For u(x, t) = g(x, t), x ∈ Γg

(W) (w , ρcu̇) + a(w , u) = (w , l) + (w , h)Γ

in which

(w , ρcu(0)) = (w , ρcu0)
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Galerkin Form of the Heat Equation

We discretize V to Vh and S to Sh. Vh has individual members vh

i.e. vh(t) ∈ Vh. Sh has individual members uh which permit the
decomposition into uh = vh + gh, and consequently u̇h = v̇h + ġh. The
temperature boundary conditions are satisfied by gh(t). More fully

uh(x, t) = vh(x, t) + gh(x, t)

We are now in a position to obtain the Galerkin form of the heat equation
as

(G) (wh, ρcv̇h)+a(wh, vh) = (wh, l)+(wh, h)Γ−(wh, ρcġh)−a(wh, gh)

subject to
(wh, ρcvh(0)) = (wh, ρcu0)− (wh, ρcgh)

This is a semi-discrete equation as time is left continuous.
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Shape Functions

We represent gh and vh in terms of shape functions as follows

vh(x, t) =
∑

A∈η−ηg

NA(x)dA(t)

gh(x, t) =
∑
A∈ηg

NA(x)gA(t)

Note that the shape functions are not time dependent. Time dependence
is carried purely by the nodal values. We also have

wh =
∑

A∈η−ηg

NA(x)cA
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Towards the Matrix Form
These approximations are substituted into (G) to give ∑

A∈η−ηg

NAcA , ρc
∑

B∈η−ηg

NB ḋB

 + a

 ∑
A∈η−ηg

NAcA ,
∑

B∈η−ηg

NBdB


=

 ∑
A∈η−ηg

NAcA , l

 +

 ∑
A∈η−ηg

NAcA , h


Γ

−

 ∑
A∈η−ηg

NAcA , ρg
∑
B∈ηg

NB ġB

− a

 ∑
A∈η−ηg

NAcA ,
∑
B∈ηg

NBgB


which may be expressed more concisely as

for A ∈ η − ηgNA , ρc
∑

B∈η−ηg

NB

 ḋB + a

NA ,
∑

B∈η−ηg

NB

 dB

= (NA, , l) + (NA, , h)Γ

−

NA , ρc
∑
B∈ηg

NB

 ġB − a

NA ,
∑
B∈ηg

NB

 gB
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The Matrix Form

We can then simplify further to give

for A ∈ η − ηg

∑
B∈η−ηg

(NA , ρcNB)ḋb +
∑

B∈η−ηg

(NA , NB)db

= (NA, l) + (NA, , h)Γ∑
B∈ηg

(NA , ρcNB)ġB −
∑
B∈ηg

a(NA, ,NB)gB

which is simply the matrix equation

(M) Mḋ + Kd = F, d(0) = d0
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Assembly
The ‘conductivity matrix’ (in this case the matrix of heat capacities) M is
formed by

M =
nel
A
e=1

(me), me = [me
ab], me

ab =

∫
Ωe

NaρcNbdΩ

The ‘stiffness’ matrix, as before, is

K =
nel
A
e=1

(ke), ke = [keab], keab =

∫
Ωe

BT
a DBbdΩ

The force vector is

F(t) = Fnodal(t)+
nel
A
e=1

(fe(t))

where

fe = {f ea }, f ea =

∫
Ωe

NaldΩ +

∫
Γh
h

NahdΓ−
nen∑
b=1

(keabg
e
b + me

abġ
e
b
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Lumped M Matrix

Note that the symmetry and bilinearity of its component functions means
that M is symmetric and positive definite. Also, importantly, the definition
is variationally consistent.

This means that its definition has been derived from first principles
starting from the weak form of the initial equation. Such a definition leads
to optimal error estimates in the finite element solution.

However, in some cases (such as in explicit solution algorithms) it can be
beneficial to define the ‘mass’ matrix differently such that it is diagonal
i.e. all its terms are ‘lumped’ onto the diagonal. This diagonalization can
be achieved via the application of nodal quadrature (see tutorial problem
set).
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Algorithms for the Solution of Parabolic Problems
Recall the semi-discrete matrix form of a parabolic problem is

Mḋ + Kd = F

in which
M Capacity matrix
K Conductivity matrix
F Heat Supply vector
d Temperature vector

and the heat supply vector is itself a function of time, i.e.

F = F(t)

We want to solve the initial value problem: find d(t) which satisfies the
above equation subject to d(0) = d0.

Visualizer

Demonstrate the Trapezoidal Family of Solution Schemes
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Summary

We have now extended the finite element method to account for
time-varying problems. The techniques used to solve the 1-D Parabolic
Heat Equation can readily be extended for problems in 2 or 3 spatial
dimensions by following a similar approach.

Particular points are that:

by placing time variation onto the nodal values the assembly operator,
shape functions, and K matrix are inherited from the classical linear
heat conduction approximation

symmetric bilinear weak forms are very convenient

time marching methods may be used to evaluate the time-dependent
solution

In conclusion, the finite element method is a very powerful technique.
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