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Section Objectives

We have now seen how to carry out a finite element approximation of a
2-D BVP with a scalar field variable (and we will later extend this for
vector field variables). In addition we have shown how compatible
elements may be generated which have shape functions that satisfy certain
fundamental requirements.

In this section we will now introduce some additional techniques which
facilitate the implementation of the finite element method, specifically:

the use of numerical integration for finite elements for which the
required functions are cumbersome or do not have an analytical
solution

the change of variables in shape function derivatives by means of the
Jacobean determinant

the concise formulation of elemental ‘stiffness’ matrices
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Numerical Integration

We are aiming to compute the integral∫
Ωe

f (x)dΩ

where, for example, f = BT
a DBb with Ba = ∇Na. This integration may be

carried out in the element’s parent domain by a change of variables, i.e.

nsd = 1

∫
Ωe

f (x)dx =

∫ 1

−1
f (x(ξ))x,ξ(ξ)dξ

nsd = 2

∫
Ωe

f (x , y)dΩ =

∫ 1

−1

∫ 1

−1
f (x(ξ, η), y(ξ, η))j(ξ, η)dξdη
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1-D Numerical Integration

We first consider the numerical integration of a function g(ξ) when
nsd = 1. The integration is approximated by a summation∫ 1

−1
g(ξ)dξ =

nint∑
l=1

g(ξ̃l)wl + R ≈
nint∑
l=1

g(ξ̃l)wl

where nint is the number of integration points.

Possible approaches to choosing ξl and wl are the trapezium rule, or for
greater accuracy, Simpson’s rule: nint = 3, ξ̃1 = −1, ξ̃2 = 0, ξ̃3 = 1,
w1 = w3 = 1/3, and w2 = 4/3. In this case the error is

R =
−g (4)(ξ)

90

where g (4) = g,ξξξξ.

Numerical integration by Simpson’s rule is therefore 4th-order accurate.
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Gaussian Quadrature

An alternative numerical integration technique is Gaussian quadrature. In
this case, if nint = 1

ξ̃1 = 0, w1 = 2, R =
g,ξξ(ξ̃)

3

i.e. the solution is 2nd-order accurate. If nint = 2

ξ̃1 = − 1√
3
, ξ̃2 =

1√
3
, w1 = w2 = 1, R =

g (4)(ξ̃)

135

i.e. the solution is 4th-order accurate.

If we compare this with integration by Simpson’s rule, we can see that the
same accuracy of integration is achieved with one fewer integration points.
This results in significant computational savings.

In multiple dimensions, 1-D quadrature rules are applied on each
coordinate separately.

M. Santer (Aero) F.E.M. 5 / 9



Shape Function Derivatives

Recall the definition of the Ba matrix which is used to evaluate the
element stiffness matrix requires the differentiation of the shape functions
to obtain (in two dimensions, i.e. nsd = 2) Na,x and Na,y . These may be
expanded using the chain rule of differentiation to obtain

Na,x = Na,ξξ,x + Na,ηη,x

Na,y = Na,ξξ,y + Na,ηη,y

We cannot obtain these directly as we do not know ξ = ξ(x , y) and
η = η(x , y). We do, however, know

x(ξ, η) =
nen∑
a=1

Na(ξ, η)xea

y(ξ, η) =
nen∑
a=1

Na(ξ, η)y ea
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Jacobean Determinant
Hence we can calculate

x,ξ =

[
x,ξ x,η
y,ξ y,η

]
in which

x,ξ =
nen∑
a=1

Na,ξx
e
a

etc.

We can then obtain the terms we require to differentiate the shape
functions by inverting the above expression for x,ξ.

(x,ξ)
−1 =

[
ξ,x ξ,y
η,x η,y

]
=

1

j

[
y,η −x,η
−y,ξ x,ξ

]
in which j is the Jacobean defined as

j = det(x,ξ) = x,ξy,η − x,ηy,ξ
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Element Stiffness Formulation
It is also convenient and efficient to evaluate the element stiffness matrix
with respect to the parent domain.

ke =

∫
Ωe

BTDBdΩ =

∫
�
BTDBjd�

Carrying out this integration using quadrature gives

ke ≈
nint∑
l=1

(BTDBj)

∣∣∣∣∣
ξl

wl

If we define
D̃ = j(ξl)wlD

we can write

ke ≈
nint∑
l=1

(BT D̃B)l
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Summary by Example

We have introduced two mathematical techniques that facilitate the
implementation of the Finite Element Method:

Numerical integration

Generation of shape function derivatives

The techniques that have been introduced in this section are best
illustrated by example

Visualizer

Demonstration of the generation of an elemental stiffness matrix in global
coordinates using Gaussian quadrature for a 4-node quadrilateral element
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