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Section Objectives

In the last section we introduced the Galerkin method as a refinement of
the weighted residual technique for the solution of linear systems.

In this section we will:

apply the Galerkin method to solve a simple 1-D problem

first introduce the (S) → (W) → (G) → (M) procedure

introduce finite elements in a globally-defined form
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Preliminaries

We will use subscript notation for conciseness. The form we will adopt
uses subscripts to indicate differentiation.

A subscript comma indicates differentiation with respect to the variable
following the comma. If there are n variables following the comma, this
indicates the nth differential. For example

u,xx =
d2u

dx2

Sobolev Space

u ∈ H1 =⇒ u,x is square-integrable, i.e.∫ 1

0
(u,x)2dx <∞
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1-D Poisson Equation

Consider the solution of the one-dimensional Poisson equation over the
domain Ω = [0, 1] with both a Dirichlet and a Neumann boundary
condition.

This could represent, for example, a 1-D Heat conduction problem.

Our problem is a two-point BVP.

(S)


u,xx + l = 0 on Ω

u(1) = g (Dirichlet)
−u,x(0) = h (Neumann)

(S) indicates the strong form of the problem

M. Santer (Aero) F.E.M. 4 / 12



The Weak Form

The first step in the process is to convert (S) to the weak form. We will
use the set of trial solutions S and the set of weight function V

S = {u|u ∈ H1, u(1) = g}
V = {w |w ∈ H1,w(1) = 0}

Visualizer

Convert the strong form (S) to the weak form (W ) where

(W ) a(w , u) = (w , l) + w(0)h

M. Santer (Aero) F.E.M. 5 / 12



The Galerkin Method I

We now consider a discretization (or mesh) of the domain Ω represented
by a superscript h. This gives us the discrete trial and weight functions as

Sh ⊂ S and Vh ⊂ V

which implies that if uh ∈ Sh then uh ∈ S, and similarly if wh ∈ Vh then
wh ∈ V. Also we require uh(1) = g and wh(1) = 0.

We assume that Vh is given and has individual members vh, i.e. vh ∈ Vh

The members of the discrete solution set are

uh = vh + gh, uh ∈ Sh

in which gh is a given function satisfying the essential boundary condition,
i.e. gh(1) = g , and hence uh(1) = vh(1) + gh(1) = g .
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The Galerkin Method II

We can substitute these discrete solutions into the symmetric bilinear form
of the weak expression (W)

a(wh, uh) = (wh, l) + wh(0)h

Expanding uh into its constitute parts and rearranging gives the Galerkin
form of the problem. In full this is:

for a given l , g , and h, find uh = vh + gh, vh ∈ Vh subject to ∀ wh ∈ Vh

(G ) a(wh, vh) = (wh, l) + wh(0)h − a(wh, gh)

(G ) indicates the Galerkin form of the problem
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Shape Functions
We now need to say something about the form of the discrete weighting
functions. We specify

wh (∈ Vh) =
n∑

A=1

cANA = c1N1 + c2N2 + · · ·+ cnNn

where NA are the ‘shape functions’.

NA(1) = 0 in order to satisfy the requirement that wh(1) = 0. One
additional shape function Nn+1 is needed which has the property
Nn+1(1) = 1. This enables us to write gh = gNn+1 and hence gh(1) = 1
as required.

We then use the same shape functions to represent the solution

uh = vh + gh =
n∑

A=1

dANA + gNn+1
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Towards the matrix form ...
We can now substitute our expressions for uh and wh into G to get

a

(
n∑

A=1

cANA,

n∑
B=1

dBNB

)
=

(
n∑

A=1

cANA, l

)

+

(
n∑

A=1

cANA(0)

)
h − a

(
n∑

A=1

cANA, gNn+1

)

We can now invoke the bilinearity of a(·, ·) and (·, ·) to re-express this as

0 =
n∑

A=1

cA

(
n∑

B=1

a(NA,NB)dB − (NA, l)− NA(0)h + a(NA,Nn+1)g

)

or, more consisely

0 =
n∑

A=1

cAGA
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The matrix form

As cA is nonzero and arbitrary =⇒ GA = 0 hence

n∑
B=1

a(NA,NB)dB = (NA, l) + NA(0)h − a(NA,Nn+1)g

We now define

KAB = a(NA,NB)
FA = (NA, l) + NA(0)h − a(NA,Nn+1)g

which enables us to write

n∑
B=1

KABdB = FA A,B = 1, 2, · · · , n
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The matrix form

In matrix notation this can be expressed as

(M) [KAB ]{dB} = {FA} or Kd = F

(M) indicates the Matrix form of the problem

Note we have followed the path (S)→ (W )→ (G )→ (M). This will still
be the case as we increase the complexity of the problems we are solving.

Symmetry of a(·, ·) means that KAB = KBA or K = KT which has
important computational ramifications. This is the advantage of our
specific choice of (W ).
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Summary

We have used the Galerkin method to reduce a 1-D BVP to an
approximate matrix form that is easily solved

We have followed the path (S)→ (W )→ (G )→ (M). This will be
the case for all the problems we consider in this course

The accuracy of the approximate solution is dependent on the choice
of shape functions

Is a shape function a finite element?

Visualizer

Example of a two d.o.f. approximation, i.e.

n = 2
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