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Section Objectives

In the last section we introduced the Galerkin method as a refinement of
the weighted residual technique for the solution of linear systems.

In this section we will:

@ apply the Galerkin method to solve a simple 1-D problem
e first introduce the (S) — (W) — (G) — (M) procedure

@ introduce finite elements in a globally-defined form
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Preliminaries
We will use subscript notation for conciseness. The form we will adopt
uses subscripts to indicate differentiation.

A subscript comma indicates differentiation with respect to the variable
following the comma. If there are n variables following the comma, this
indicates the nth differential. For example

d?u

Uxx = dx2

Sobolev Space

ve H' — u x is square-integrable, i.e.

1
/ (ux)?dx < oo
0
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1-D Poisson Equation

Consider the solution of the one-dimensional Poisson equation over the
domain Q = [0, 1] with both a Dirichlet and a Neumann boundary
condition.

This could represent, for example, a 1-D Heat conduction problem.

Our problem is a two-point BVP.

Uxx+! = 0 onQ
(S) u(l) = g (Dirichlet)
—ux(0) = h (Neumann)

(S) indicates the strong form of the problem ]
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The Weak Form

The first step in the process is to convert (S) to the weak form. We will
use the set of trial solutions S and the set of weight function V

S
1%

{ulue HY, u(1) = g}
{w|lw € HY, w(1) = 0}

Visualizer

Convert the strong form (S) to the weak form (W) where

(W) a(w,u) = (w,!)+ w(0)h
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The Galerkin Method |

We now consider a discretization (or mesh) of the domain Q represented
by a superscript h. This gives us the discrete trial and weight functions as

S"cS and V'cvy

which implies that if u” € S" then u" € S, and similarly if wh € V" then
wh € V. Also we require u”(1) = g and w'(1) = 0.

We assume that V" is given and has individual members v/, i.e. v/ € V"

The members of the discrete solution set are
u" = v+ g uh e Sh
in which g is a given function satisfying the essential boundary condition,

i.e. g"(1) = g, and hence uv"(1) = v(1) + g"(1) = g.
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The Galerkin Method I

We can substitute these discrete solutions into the symmetric bilinear form
of the weak expression (W)

a(wh, u") = (w", 1) + wh(0)h

Expanding u” into its constitute parts and rearranging gives the Galerkin
form of the problem. In full this is:

for a given /, g, and h, find u" = v + g/, vh € V" subject to V wh € V"

(G) a(wh, vh) = (Wh, N+ Wh(O)h — a(wh,gh)

(G) indicates the Galerkin form of the problem J
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Shape Functions

We now need to say something about the form of the discrete weighting
functions. We specify

n
wh (E Vh) = Z calNg = cgNv + oolNo + -+« + ¢, N,
A=1

where Ny are the ‘shape functions’.

Na(1) = 0 in order to satisfy the requirement that w/(1) = 0. One
additional shape function N,;1 is needed which has the property
Nn11(1) = 1. This enables us to write g" = gN,;1 and hence g"(1) = 1
as required.

We then use the same shape functions to represent the solution

n
ulh =vh 4 gh = ZdANA + gNn+1
A—1
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Towards the matrix form ...
We can now substitute our expressions for u and w” into G to get

a (Z CANA, Z dBNB> = (Z CANA, /)
A=1 B=1 A=1
n n
+ (Z CANA(0)> h—a <Z CANA,gNn+1>
A=1 A=1

We can now invoke the bilinearity of a(-,-) and (-, -) to re-express this as

0= Z ca (Z (Na, Ng)dg — (Na, 1) — Na(0)h 4 a(Na, N,,H)g)
B=1

A=1

or, more consisely
n
0= E CAGA
A=1
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The matrix form

As ca is nonzero and arbitrary = G4 = 0 hence

n

> " a(Na, Ng)dg = (Na, !) + Na(0)h — a(Na, Nny1)g
B=1

We now define

Kag = a(Na, Ng)
Fa (Na, 1) + Na(0)h — a(Na, Npt1)g

which enables us to write

> Kagdg=Fa AB=12,,n
B=1
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The matrix form

In matrix notation this can be expressed as

(M) [Kagl{ds} ={Fa} or Kd=F

(M) indicates the Matrix form of the problem )

Note we have followed the path (S) — (W) — (G) — (M). This will still
be the case as we increase the complexity of the problems we are solving.

Symmetry of a(-,-) means that Kag = Kga or K = KT which has
important computational ramifications. This is the advantage of our
specific choice of (W).

M. Santer (Aero) F.E.M. 11 /12



Summary

@ We have used the Galerkin method to reduce a 1-D BVP to an
approximate matrix form that is easily solved

o We have followed the path (S) — (W) — (G) — (M). This will be
the case for all the problems we consider in this course

@ The accuracy of the approximate solution is dependent on the choice
of shape functions

@ |s a shape function a finite element?

Visualizer

Example of a two d.o.f. approximation, i.e.

n=2
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