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Entropy

Example: Temperature in a room

X €{-10,-9,...,28,29,30}
Source —

Scenario 1 (no information): 23, 23, 23, 23, 23, 23, ...
Scenario 2 (little information): 23, 23, 23, 24, 23, 23, ...
Scenario 3 (a lot of information): -10, 23, 30, -5, 0, 15, ...

Example: Who wins a football match?

X €{A,B}
Fuente —

Scenario 1 (no information): A,A,A,A,A,AAAAA,...
Scenario 2 (little information): A,A,A,B,B,A,A,A,A,B,AA,...
Scenario 3 (Lots of information): A,B,B,A,A,A,B,B.B,A A B,...
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Entropy

 Given an information source X € {Xy, X4, ..., X;,_1} (e.&.
experiment, random variables,etc.) the Shannon information of a
particular outcome 1s defined as

1
P(X=X;)

h(X,) = 1og( ) = —log(P(X = X))

* The Shannon information is the amount of surprise that the outcome

produces
 If the base of the logarithm 1s 2, then the information is measured
in bits
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Entropy

 Example:
X €{0,1,2,3};
P(X=0)=025PX=1)=PX =2)=0.125
P(X=3)=0.5

1
h(0) = log (0 25) = log(4) = 2 bits

h(1) = h(2) = 10g< ) = log(8) = 3 bits

0.125

h(3) = log <015) = log(2) = 1 bits

h(3) < h(0) < h(1) = h(2)

Less surprise More su
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Entropy

* Entropy is the average of Shannon information of an information source X

HOO = E[h(X0] = ) h(X)PRXD) = ) h(X)P(XD)

1
= ZP(XL') log (P(Xi)) = - z P(Xi) log(P(X)))
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Entropy

H(X) = z P(Xi)log ( z P(Xi)log(P(X;))

1
P(Xi ))

Example: Who wins a football match?
Scenario 1 (no information): A,A,A,A,A,A,AAAA,...

H(X) = _p(A) log p(A) o p(B) lOg p(B) The most probable
:—llog]—()log():()—():() event is the one

contributing less

Scenario 2 (little information): A,A,A,B,B,A,A,A,A,B;AA,...

H(X)=-32log3-1Llogt=—(~0.2158)—(~0.3466) = 0.5624

Scenario 3 (a lot of information): A,B,B,A,A,A,B,B,B,A,A,B,.
H(X)=—-+1logs—+log+=—(-0.3466) — (0. 3466) 0.6932

H(X)=-3log,+s—+log,5=—(-0.5)—(-0.5) = 1(bits)
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Entropy

Example:
X €{a,b,c,d}

Source —
p(a)

p(b)
p(c) =
p(d)=5

I
o= K|— N[
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Entropy

Example:
X €{0,1}
Source — H(X)=-plogp—(1-p)logl-p)
p(O) — p Entropia H(X)
pM=1-p [
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Entropy

Some comments on operations

Olog2=0
1 ~ Consensus
plogl=oo
1
log, x = b TEEN log, x = logiy X 3.32log,, x
log, a log,, 2

log, x =log_b-log, x
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Entropy

Properties
H(X)>0
Proof:
0<p(x)Ll= >1= log : >0
p(x) ZI(X)
1

>0

H(X)= 1
(X) ;p({) i

p(x)=20
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Entropy

Properties

H,(X) =(log, a)H ,(X)
Proof:

1 1 1
H,(X) = E{log, _E log.
) {Og p<x>} {logab o8 p(x)}

1
= E{logb alog, ﬁ} =(log, a)H,(X)
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Joint entropy

* Given two information sources X and Y the joint Shannon
information of a particular joint outcome is defined as

h(Xl-,Yj)zlog(P(X e X])) —log(P(X = X;, X = X;))

* The joint entropy i1s the average of the joint Shannon information

H(X,Y) = E[h(X,Y)] ZEh(Xl,Y)P(XL,Y)

z P(X;,Y;)log (P(X“ Y)> z P(X;,¥;)log (P(X;,1;))
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Joint Entropy

Joint Entropy H(X,V) = 3, P(X,,Y})log (P (Xli,Yj)) = — %, P(X;, ;) log (P(X, 1;))

Example: Peter 1s bilingual (Spanish/English) and he reads “The
Times” with probability 0.5 and “El Pais” with
probability 0.5.

H(newspaper) =1bit
p(newspaper,language)

language

English Spanish

newspaper

The Times 0.5 0

H(newspaper,language) =

=—+log+—1log+ =1bit

2

El Pais 0 0.5
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Joint Entropy

Joint Entropy H(X,V) = 3, P(X,,Y})log (P (Xli,Yj)) = — %, P(X;, ;) log (P(X, 1;))

Example: Peter watches the CNN and the BBC with the following

probabilities
H(TV)=1bit
p(TV ,language)
: language English Spanish H(TV ,language) =
4 4 4 4 2 2
BBC | O ’ — 1.5 bits

CNN 0.25 0.25
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Conditional Entropy

 @Given two information sources X and Y
* The average information of Y given that X = X; 1s

H(Y|X = X;) = E[h(Y]X = X))] = X p(h(Y;|X))h(¥;]X))

= ) o)

So this is a conditional entropy for a given outcome of X.
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Conditional Entropy

* Conditional entropy for a given outcome of X.
HY|X =X,)=Y.p(Y|X; lo( ! )
i ]p( ]l l) 8 P(Yj|Xi)

* The conditional entropy is the average of the conditional entropy for a given
outcome of X, that has already averaged the Shannon information over Y, so it is
going to be averaged over X.

HY|X) = Epxp[HY|X)] = 2ip(X)H(Y |X = X;)

zpmip( IXi>>1°g(p(yi1|x,-)>
1
P(X;
- Z.ZP(XL-,YJ-)Iog (P(Y |X; )) 22” (¥, ¥;) log (P(?f(i")’f))
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Conditional Entropy

Conditional Entropy H (Y |X) = ), p(X;,) H(Y|X = X;)

=2 2 P(X)P(Y;|X;) log (ngi;j)) =32 P(X;Y;)log (Pfgiy)j))

Properties

H(X,Y)=HX)+HY | X)=HY)+H(X|Y)

H(X)-H(X|Y)=HY)-HY | X)

HX|Y)=H(Y|X)
HX, Y| Z)=HX|2)+HY | X,Z)
If X and Y are independent, then HY|X)=H()
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Conditional Entropy

Example: Peter watches CNN and BBC
p(TV |language)
language

TV

English Spanish

p(TV ,language) BBC | 0666 0

language

English Spanish

TV

CNN| 0.333 1

BBC 0.5 0

p(language |TV)

language
CNN 025  0.25 ~ English Spanish

BBC 1 0

CNN| 0.5 0.5
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Conditional Entropy

p(TV ,language) p(language|TV)

language idioma

English Spanish Inglés  Espaiiol

TV

BBC | 0.5 0 BBC 1 0
CNN' 0.25 0.25 CNN'! 0.5 0.5

TV

T
language

TV

BBC 1 0

English Spanish p(language|TV = BBC)
H(language | TV = BBC) =0 bits

>Iﬁl(lazngijtage V) =
0.5 bits

language

TV

CNN 0.5 0.5

English Spanish p(language | TV = CNN)
H(language | TV = CNN) =1 bits

_/
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Differential or Relative Entropy
(Kullback-Leibler distance)

~ p(x) p(x)
Relative Entropy D(pl|q) = ZP(x) logq(x) Ep @) {l q(x)}

Properties

D(pllg)=0
D(pllp)=0
D(pllq)#D(qll p)

D(p(y| X =x)[[q(y| X =x))

A
o, . / \
Conditional  pEEMIlaEI) =Y p() Y PO logh 2
i q(ylx)
relative entropy x y
_ p(y|x) (¥ x)
= 2.2, Pl =E {10 P
q(y[x) (x.y)) 108
T T T el
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Relative Entropy

Example: Let’s asume that the actual probabilities of an information source are

X €{0,1}

p0)=p
p()=1-p

Source — H,(X)=-plogp—-(1-p)log(l-p)

However, due to estimation errors, what we really have 1s

X €{0,1}
Source — H, (X)=-qlogqg—(1-q)log(l-q)
p(0)=¢q
p()=1-¢
1 I
D(plq)= plog’-+(1=p)logi—"
q l-qg [ p=q PW@lo=Dlp)=0
D(q || p)=qlog—+(1-g)log
P l-p

Random Signals
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Relative Entropy

Example: Given the following actual distribution of a set of symbols

X €{0,1} .
H ,(X)=1bit

Source —

Source —

D(p|lq)=0.0850bits _
Co—— H (X)=H,(X)+D(q] p)
D(q || p) =0.0817bits
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Mutual Information

Mutua IX:1)= Y plx,y)logL52)
Information xeE,ye¥ p(x)p(y)
p(x,) }
=E,.,1log = D(p(x, )|l p(x)p(»))
a ’y){ p(x)p(»)
Properties

I(X:Y)=H(X)-H(X|Y)=H)-H(Y | X)
I(X:Y)=H(X)+H(Y)-H(X,Y)
I(X;:X)=H(X)

H(X) H(X.Y) H(Y)
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Jensen’s inequality

Jensen’s inequality

Given the convex function f(x) and the r.v. X, then

E{f (X)) f(E{X))
Thanks to this inequality 1t can proved the following
D(pllg)=0 D(pllg)=0<>p=q
[(X;Y)>0 I(X;YZ2)=20
H(X)<log(#X) H(X)=log(#X) < p(X)=k
HX|Y)<H(KX) H(X|Y)=H(X) < X,Y independent
N N
H(X,... X)) <D H(X) H(X,,...Xy)=) H(X,)> X, independent
i=1 i=1

#X=number of symbols (values) of X
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Jensen’s inequality

Highlights

H(X)<log(#X)

EXAMPLE: If X can have 4 values, its entropy cannot be greater than
log,(4)=2 bits
e H(X)=log(#X) p(X)=k

An information source provides maximum information when its values
(symbols) have equal probabilities

. HX|Y)SH(X)
Any extra knowledge will never increase the information given by a source
. H(X|Y)=H(X)< X,Y independent

If extra knowledge about another information source Y does not vary the
information provided by X, then X and Y are independent
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Markov chains

Given the random variables X,Y,Z, these variables conform a Markov
chain X > Y > Z if p(z|x,y)= p(z|y)

Example:
X Y Z Possible sequences:
0.5
1 B3b, Ala, A2b, etc.
04 A 40’5 2 T a
0.6 B i 3 Mb
p(x=A4)=04 p(y=1|x=4)=0.5 p(z=aly=1)=1
p(x=B)=0.6  py=2lx=4=05________________ p=bly=2)=1

 p(y=3lx=A)=p(y=4]x=4)=0 | p(z=b|y=3)=1
p(v=1lx=B)=p(y=2]|x=8)=0_| p(z=a|y=4)=0.5
p(y=3|x=B)=09 p(z=bly=4)=0.5
p(y=4|x=B)=0.1
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Signal processing inequality

XY > Z=I1(XY)>1(X:2)

The signal processing inequality leads to the assertion that if X 1s processed to
generate Y, and Y is post-process to generate Z, then, X has more information on Y
tan on Z. Thus, Z does not provides more information about X tan Y..

X 5Y > f(Y)= I(X:Y) > I(X; f(Y))

IfY 1s generated from X, the information that Y contains regarding X, is not going
to be increased if Y is processes by any signal processing algorithm.

X >Y>Z=I(XY|2)<I(X.Y)

In a Markov chain, knowing the value of Z decreases (or just keeps) the
dependency between X and Y.
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Coding and compression: Block Code

Example:
xl' PT{X — xi} C(‘xi)
1 1/2 0
2 1/4 10
3 1/8 110
4 1/8 111

Example:
xl‘ PT{X — xi} C(xi)
1 1/3 0
2 1/3 10
3 1/3 11

H(X)<L(C)
+ E?E,, Random Signals

AVERAGE LENGTH OF THE CODE
L(C) = E[l\(axi))]

Length of code C(xi)

H(X)=L(C)=1.75bits

H(X) =1.58bits
L(C) =1.66bits

This is a fundamental property in statistical coding
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Huffman coding

Source X
Sl (X) £ L(Copgpen) < LC)

. Huffman coding produces a code
Sort symbols with the minimum posible average
by probability length. It's not hte optimum code,
! but it's the best we can get.
Cluster the D
least probable symbols
(D=base of code) Applications: JPEG, MP3, etc.
Si No _
‘#Symbol@ D " Build code

Random Signals Degree in Biomedical
Engineering
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Huffman coding: D=2

| | |
| | |
| | |
X | p X p X | P X | p
| | |
| | |
x1 0.4 I x1 | 04 ! x1| 04 l x1 | 04
x2 | 03 i x2 [ 03 | x2 | 03 | x2 | 0.3
x3 0.1 | x3 | 0.1 | x4(x5x6) | 0.2 | x3(x4(x5x6)) | 0.3
x4 0.1 | x4 | 0.1 | x3 | 0.1 l
x5 | 0.06 | (x5x6) | 0.1 | | |
x6 0.04 | | |
| | |
__________________ d - _____
1 1 1 1 1 X.
xi pi X6 I C(xl)
0 0 0 0 0
x1 0
x2(x3(x4(x5x6))) | 0.6 X2 10
x1 04 xI x2 x3 x4 x5 3 110
x4 1110
x5 11110
H(X)=2.1435bits L(Cinan) = 2.2bits x6 11111
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Channel characterization

Memoryless channel

P(yln]| x(n],x{n—1],x{n—2],...) = P(y[n]| x[n])

))2 W /P(Jﬁ [x) Py lx) o Py lx)
0= Py [x) P(yy|x) . P(yylx,)
Y-
Xy Yy L xy) Pylxy) o P(yylxy))

Channel with memory

P(y[n]| x[n],x[n—1],x[n—-2],...) = P(y[n]| x[n]x[n—1]) Memory=1
P(y[n]| x[n],x[n—1],x[n—2],...) = P(y[n]| x[n]x[n—1]x[n —2])  Memory=2
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Channel capacity

C=max[(Y;X) 0 < C <min(log# X, log#Y)

p(X)

Example: Binary Channel with no noise

’e 00 (10 P(X=0)p
l @ 0 | Lo 1 P(X=1)=1-p
I(Y,X)Z Z p(X,y)log P(x,y) _
xe=,ye¥ p(X)p(y)
= p(x=0,y=0)logZX=0I=0 gy =1)log L= =D
p(x=0)p(y=0) p(x=0)p(y=1)
+p(x=1,y=0)log plr=1y=0) + p(x=1,y=1)log pix=Ly=0
p(x=Dp(y=0) p(x=1)p(y=1)
+ g}E}r‘gr’dad Random Signals Deg_ree in Biomedical
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Channel capacity

Example: Binary channel with no noise

0@ @ () 1 0
1 @ -0 1 Q_O ]

j“ Transition matrix

X = —
p<X=x,Y=y>=p<X=x>p<Y=y|X=x)={p( .

p¥=y)=) pY=y|X =x)p(X =x)=p(X =)

I(Y;X)=p(x=0,y=0)log p(x=0,y=0) +p(x=0,y=1)log p(x=0,y=1)

zg(x =10)p(g)= 0) (p(x 1= 0)p1()y =1)
—1,y=0)log 2t~ >Y " —1,y=1)log =2V "
ek © p =0 ek pzxof pO=DP0 =D
SPEOes =0y P T =)
= plog—+(1- p)log—— = H(X)
p 1-p
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Channel capacity

Example: Binary channel with no noise

C:maxl(Y;X):max{plogl+(l—p)log : }
p

p(X)

p l-p

> p:%:C:Ibit

Hp) o5

( Remember: P(X=0)=p)

0 0.1 02 03 04 05 06 07 0.8 09 1
p
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Channel capacity

Example: Binary Symetric Channel (BSC) — channel with noise

¢ oelt——00
‘>< q:E:C:maxl(Y,X)=1—H(P)
q
p
l-g 1 1

1 ]
HY|X=0)=p(Y =0|X=0)o +p(Y =1 X =0)lo
(Y| )= p( | ) gp(Y:O|X:O) D( | ) gp(Y=1|X=O)
1 1
=(-p)log +plog—=H(p)=H{ | X =1)
l-p p

P(Y=0)=P(X=0)P(Y=0| X =0)+P(X =)P(Y =0| X =1)=g(1- p)+(1—q)p

PY=D)=P(X=0)PY =1| X =0)+ P(X =D)P(Y =1| X =D)=gp+(1—q)(1- p)
1 1 .

H(Y)=P(Y =0)log 5 =0 +P(Y =Dlog————< H(X) < Ibit

\ Only equal if Y is
uniform
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Channel capacity

Example: Binary Symetric Channel (BSC) — channel with noise

q:%:C:maxl(Y;X)=1—H(P)
q

t.l

1(Y;X)=HY)-H(Y | X)
=HY)-Y p(x)HY | X =x) <1-) p(x)H(p)=1-H(p)=C

~

If Y is uniform

& o CE . . . .
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Channel Capacity

Example: Binary channel with noise (BSC)

C=maxI(Y;X)=1-H(p)

p(X)

p=0 or p=1 = C=1 bit
p=0.5 = C=0 bits

H(p) o5

( Remember: P(Y=1|X=0)=P(Y=0|X=1)=p )

0 0.1 02 03 04 05 06 07 08 09 1
p
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Challenge: Channel capacity

Given an “erasure channel”, where the data is received corrected (0 or “17)
or
not received at all (““?”) show that the capacity C=I1-p
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Channel coding theorem

Optimum point

Unrealizable cases

It is also posible to express channel capacity in bits per second. Given C and the
transmission rate R, it is proved that it is posible to achieve an error probability Pe=0
if R<C. Also, if R>C then the error probability increases.

It is posible to find codes that achieves Pe=0 and also that increase the transmission
speed increasing the error rate, however the theorem does not indicate how are these
codes.

- Universidad
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Case study:

Are brains good at processing information?
(Introduction to Information Theory, J.V. Stone, 2018)

* Neurons communicate to each other continuosly

o This communication must be performed efficiently

 Horace Bellow supports the efficiency coding hypothesis, where the
sensory input must be encoded efficiently before being sent to the brain

ji— Random Signals Degree in Biomedical

Engineering

San Pablo



&= cru

Case study:

Are brains good at processing information?
(Introduction to Information Theory, J.V. Stone, 2018)

* Information in spiking neurons

o The neurons propagate action potentials (AP, a.k.a. spikes)

o If the spikes are encoded as 0’s (no AP) and 1’s (AP) it is possible to
compute the entropy of the neuron (information source)

o Considering an average firing rate of r spikes/s the capacity of the
channel might be equal to r bits/s

o However it can be proven that the information rate is bigger than that

o The trick is that the neurons also use temporal information to encode
information, so that one single spike encodes more than 1 bit

Universidad Random Slgnals Deg.ree Ir.] el
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Case study:

Are brains good at processing information?
(Introduction to Information Theory, J.V. Stone, 2018)

* Mutual information between the input and output of a neuron
o An experiment showed that a neuron (mechanical receptor of a
cricket) generates 600 bits/s
o 300 bits/s are related to the input, the rest is noise
Thinking that a neuron works with “packets” of 300 bits is out of line
o There are theories that indicate that those 300 bits are actually
divided in packets of 3 bits every 10 ms, providing continuous
information about changes in the output (speed of an object)

O
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Case study:

Are brains good at processing information?
(Introduction to Information Theory, J.V. Stone, 2018)

« Shannon optimal coding: maximizing entropy

&= cru
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In the human eye, the information provided by “Red” and “Green”
receptors is very similar
Using two different nerve fibre per receptor is a waste of channel
capacity (since there is a lot of redundancy over time)
However, it can be proved that the addition and substraction of the
outputs of the R and G receptors leads to signals with uniform
distributions
Also the substraction and summation are independent of each other
So:
1. The use of two, instead of three, separate fibres is now justified
2. The entropy is maximized so that the information rate is highly
increased
Ganglion cells in the retina perform this operations, but they use
several receptor outputs to compress information and reduce the
necessary nerve fibres: 126 million receptors = 1 million nerve fibre
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SUMMARY

Entropy

Mutual information

Signal processing inequality

Huffman coding

Channel Capacity

Channel coding theorem
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