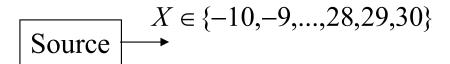


UNIT 3: Information Theory

Gabriel Caffarena Fernández

3rd Year Biomedical Engineering Degree
EPS – Univ. San Pablo – CEU
(Based on slides by Carlos Oscar Sánchez Sorzano)

Example: Temperature in a room

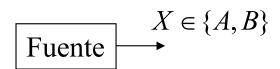


Scenario 1 (no information): 23, 23, 23, 23, 23, ...

Scenario 2 (little information): 23, 23, 23, 24, 23, 23, ...

Scenario 3 (a lot of information): -10, 23, 30, -5, 0, 15, ...

Example: Who wins a football match?



Scenario 1 (no information): A,A,A,A,A,A,A,A,A,...

Scenario 2 (little information): A,A,A,B,B,A,A,A,A,B,A,A,...

Scenario 3 (Lots of information): A,B,B,A,A,A,B,B,B,A,A,B,...

• Given an information source $X \in \{X_0, X_1, ..., X_{n-1}\}$ (e.g. experiment, random variables, etc.) the **Shannon information** of a particular outcome is defined as

$$h(X_i) = \log\left(\frac{1}{P(X = X_i)}\right) = -\log(P(X = X_i))$$

- The Shannon information is the amount of <u>surprise</u> that the outcome produces
- If the base of the logarithm is 2, then the **information is measured** in bits

• Example:

$$X \in \{0,1,2,3\};$$
 $P(X = 0) = 0.25; P(X = 1) = P(X = 2) = 0.125$
 $P(X = 3) = 0.5$

$$h(\mathbf{0}) = \log\left(\frac{1}{0.25}\right) = \log(4) = 2 \text{ bits}$$

$$h(\mathbf{1}) = h(\mathbf{2}) = \log\left(\frac{1}{0.125}\right) = \log(8) = 3 \text{ bits}$$

$$h(\mathbf{3}) = \log\left(\frac{1}{0.5}\right) = \log(2) = 1 \text{ bits}$$

$$h(3) < h(0) < h(1) = h(2)$$

Less surprise

More surprise

• Entropy is the average of Shannon information of an information source X

$$H(X) = E[h(X)] = \sum_{i} h(X_i) P(h(X_i)) = \sum_{i} h(X_i) P(X_i)$$
$$= \sum_{i} P(X_i) \log\left(\frac{1}{P(X_i)}\right) = -\sum_{i} P(X_i) \log(P(X_i))$$

$$H(X) = \sum_{i} P(Xi) \log \left(\frac{1}{P(Xi)}\right) = -\sum_{i} P(Xi) \log \left(P(X_i)\right)$$

Example: Who wins a football match?

Scenario 1 (no information): A,A,A,A,A,A,A,A,A,...

$$H(X) = -p(A)\log p(A) - p(B)\log p(B)$$

= -1\log1 - 0\log 0 = 0 - 0 = 0

The most probable event is the one contributing less

Scenario 2 (little information): A,A,A,B,B,A,A,A,A,B,A,A,...

$$H(X) = -\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4} = -(-0.2158) - (-0.3466) = 0.5624$$

Scenario 3 (a lot of information): A,B,B,A,A,A,B,B,B,A,A,B,...

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = -(-0.3466) - (-0.3466) = 0.6932$$

$$H(X) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = -(-0.5) - (-0.5) = 1(bits)$$

Example:

Source
$$X \in \{a, b, c, d\}$$

$$p(a) = \frac{1}{2}$$

$$p(b) = \frac{1}{4}$$

$$p(c) = \frac{1}{8}$$

$$p(d) = \frac{1}{8}$$

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} = \frac{7}{4}bits$$

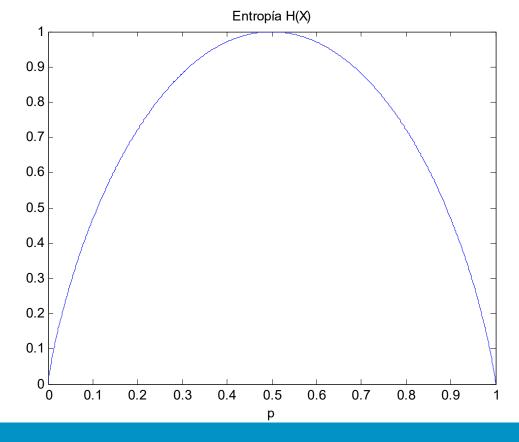
Example:

Source
$$X \in \{0,1\}$$

$$p(0) = p$$

$$p(1) = 1 - p$$

$$H(X) = -p \log p - (1-p) \log(1-p)$$



Some comments on operations

$$\begin{array}{c}
0\log\frac{0}{q} = 0 \\
p\log\frac{p}{0} = \infty
\end{array}$$
 Consensus

$$\log_a x = \frac{\log_b x}{\log_b a} \Rightarrow \log_2 x = \frac{\log_{10} x}{\log_{10} 2} \approx 3.32 \log_{10} x$$

$$\log_a x = \log_a b \cdot \log_b x$$

Señales aleatorias: 4: Procesos Estocásticos

Properties

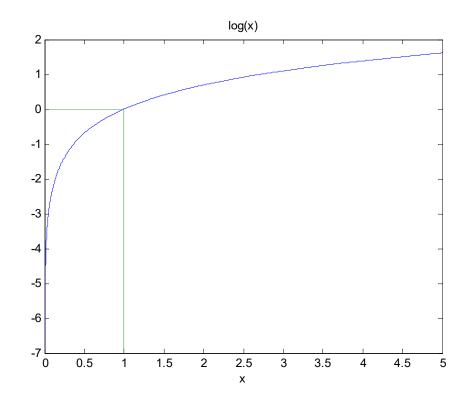
$$H(X) \ge 0$$

Proof:

$$0 \le p(x) \le 1 \Rightarrow \frac{1}{p(x)} \ge 1 \Rightarrow \log \frac{1}{p(x)} \ge 0$$

$$H(X) = \sum_{x \in \Xi} p(x) \log \frac{1}{p(x)} \ge 0$$

$$p(x) \ge 0$$



Properties

$$H_b(X) = (\log_b a)H_a(X)$$

Proof:

$$H_b(X) = E\left\{\log_b \frac{1}{p(x)}\right\} = E\left\{\frac{1}{\log_a b}\log_a \frac{1}{p(x)}\right\}$$
$$= E\left\{\log_b a\log_a \frac{1}{p(x)}\right\} = (\log_b a)H_a(X)$$

Joint entropy

• Given two information sources **X** and **Y** the **joint Shannon information** of a <u>particular</u> joint outcome is defined as

$$h(X_i, Y_j) = \log\left(\frac{1}{P(X = X_i, X = X_j)}\right) = -\log(P(X = X_i, X = X_j))$$

• The joint entropy is the average of the joint Shannon information

$$H(X,Y) = E[h(X,Y)] = \sum_{i} \sum_{j} h(X_{i},Y_{j})P(X_{i},Y_{j})$$

$$= \sum_{i,j} P(X_{i},Y_{j}) \log\left(\frac{1}{P(X_{i},Y_{j})}\right) = -\sum_{i,j} P(X_{i},Y_{j}) \log\left(P(X_{i},Y_{j})\right)$$

Joint Entropy

Joint Entropy
$$H(X,Y) = \sum_{i,j} P(X_i, Y_j) \log \left(\frac{1}{P(X_i, Y_j)}\right) = -\sum_{i,j} P(X_i, Y_j) \log \left(P(X_i, Y_j)\right)$$

Example: Peter is bilingual (Spanish/English) and he reads "The Times" with probability 0.5 and "El País" with probability 0.5.

H(newspaper) = 1 bit

p(newspaper,language)

language	English	Spanish
The Times	0.5	0
El País	0	0.5

Random Signals

$$H(newspaper, language) =$$

$$= -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = 1 bit$$

Joint Entropy

Joint Entropy
$$H(X,Y) = \sum_{i,j} P(X_i, Y_j) \log \left(\frac{1}{P(X_i, Y_j)}\right) = -\sum_{i,j} P(X_i, Y_j) \log \left(P(X_i, Y_j)\right)$$

Example: Peter watches the CNN and the BBC with the following probabilities

$$H(TV) = 1 bit$$

p(TV, language)

English	Spanish
0.5	0
0.25	0.25
	0.5

$$H(TV, language) =$$

$$= -\frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4} - \frac{1}{2} \log \frac{1}{2}$$

$$= 1.5 \ bits$$

- Given two information sources X and Y
- The average information of Y given that $X = X_i$ is

$$H(Y|X = X_i) = E[h(Y|X = X_i)] = \sum_j p(h(Y_j|X_i))h(Y_j|X_i)$$
$$= \sum_j p(Y_j|X_i) \log\left(\frac{1}{p(Y_j|X_i)}\right)$$

So this is a conditional entropy for a given outcome of X.

• Conditional entropy for a given outcome of X.

$$H(Y|X = X_i) = \sum_j p(Y_j|X_i) \log\left(\frac{1}{p(Y_j|X_i)}\right)$$

• The **conditional entropy** is the average of the **conditional entropy** for a given outcome of X, that has already averaged the Shannon information over Y, so it is going to be averaged **over X**.

$$H(Y|X) = E_{P(X_i)}[H(Y|X_i)] = \sum_{i} p(X_i)H(Y|X = X_i)$$

$$= \sum_{i} P(X_i) \sum_{j} P(Y_j|X_i) \log \left(\frac{1}{P(Y_i|X_j)}\right)$$

$$= \sum_{i} \sum_{j} P(X_i)P(Y_j|X_i) \log \left(\frac{1}{P(Y_i|X_j)}\right)$$

$$= \sum_{i} \sum_{j} P(X_i, Y_j) \log \left(\frac{1}{P(Y_i|X_j)}\right) = \sum_{i} \sum_{j} P(X_i, Y_j) \log \left(\frac{P(X_i)}{P(X_i, Y_j)}\right)$$

Conditional Entropy
$$H(Y|X) = \sum_{i} p(X_i) H(Y|X = X_i)$$

$$= \sum_{i} \sum_{j} P(X_i) P(Y_j|X_i) \log \left(\frac{P(X_i)}{P(X_i,Y_j)} \right) = \sum_{i} \sum_{j} P(X_i,Y_j) \log \left(\frac{P(X_i)}{P(X_i,Y_j)} \right)$$

Properties

$$H(X \mid Y) \neq H(Y \mid X)$$

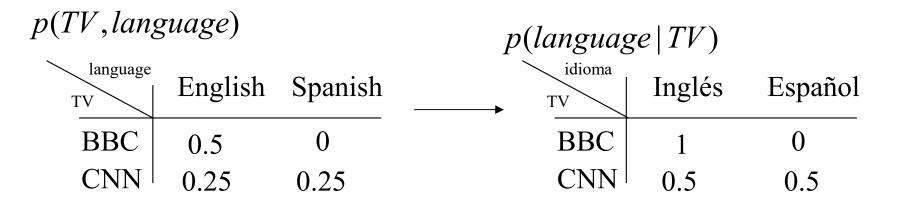
 $H(X,Y \mid Z) = H(X \mid Z) + H(Y \mid X,Z)$
If X and Y are independent, then $H(Y \mid X) = H(Y)$

Example: Peter watches CNN and BBC

p(TV, language)

language	English	Spanish
BBC	0.5	0
CNN	0.25	0.25

p(TV language)			
*	language TV	English	Spanish
	BBC	0.666	0
	CNN	0.333	1
\ p(languag	ge TV)	
	language TV	English	Spanish
	BBC	1	0
	CNN	0.5	0.5



language	English	Spanish	p(language TV = BBC)
BBC	1	0	H(language TV = BBC) = 0 bits

H(language | TV) = 0.5 bits

language	English	Spanish	p(language TV = CNN)
CNN	0.5	0.5	H(language TV = CNN) = 1 bits

Differential or Relative Entropy (Kullback-Leibler distance)

Relative Entropy
$$D(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = E_{p(x)} \left\{ \log \frac{p(x)}{q(x)} \right\}$$

Properties

$$D(p || q) \ge 0$$

 $D(p || p) = 0$
 $D(p || q) \ne D(q || p)$

Conditional relative entropy

$$D(p(y|X = x) || q(y|X = x))$$

$$D(p(y|x)||q(y|x)) = \sum_{x} p(x) \sum_{y} p(y|x) \log \frac{p(y|x)}{q(y|x)}$$

$$= \sum_{\mathbf{x}} \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) \log \frac{p(\mathbf{y}|\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} = E_{p(\mathbf{x}, \mathbf{y})} \left\{ \log \frac{p(\mathbf{y}|\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} \right\}$$

Relative Entropy

Example: Let's asume that the actual probabilities of an information source are

Source
$$X \in \{0,1\}$$

 $p(0) = p$
 $p(1) = 1-p$
 $H_p(X) = -p \log p - (1-p) \log(1-p)$

However, due to estimation errors, what we really have is

Source
$$X \in \{0,1\}$$

 $p(0) = q$
 $p(1) = 1 - q$
 $H_q(X) = -q \log q - (1 - q) \log(1 - q)$

$$D(p \| q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$$

$$D(q \| p) = q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}$$

$$p = q \log \frac{p}{p} + (1-q) \log \frac{1-q}{1-p}$$

Relative Entropy

Example: Given the following actual distribution of a set of symbols

Source
$$X \in \{0,1\}$$

 $p(0) = \frac{1}{2}$
 $p(1) = \frac{1}{2}$
 $H_p(X) = 1bit$

The estimated probabilities are

Source
$$X \in \{0,1\}$$

 $p(0) = \frac{1}{3}$
 $p(1) = \frac{2}{3}$
 $H_q(X) = 0.9183bits$

$$D(p || q) = 0.0850bits D(q || p) = 0.0817bits H_p(X) = H_q(X) + D(q || p)$$

Mutual Information

Mutual Information

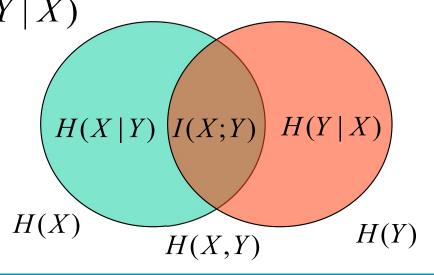
$$I(X;Y) = \sum_{x \in \Xi, y \in \Psi} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= E_{p(x,y)} \left\{ \log \frac{p(x,y)}{p(x)p(y)} \right\} = D(p(x,y) || p(x)p(y))$$

Properties

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

 $I(X;Y) = H(X) + H(Y) - H(X,Y)$
 $I(X;X) = H(X)$



Jensen's inequality

Jensen's inequality

Given the convex function f(x) and the r.v. X, then

$$E\{f(X)\} \ge f(E\{X\})$$

Thanks to this inequality it can proved the following

$$D(p || q) \ge 0$$

$$I(X;Y) \ge 0$$

$$H(X) \le \log(\#X)$$

$$H(X | Y) \le H(X)$$

$$H(X_1,...,X_N) \le \sum_{i=1}^{N} H(X_i)$$

$$D(p || q) \ge 0$$

$$I(X;Y) \ge 0$$

$$H(X) \le \log(\#X)$$

$$H(X | Y) \le H(X)$$

$$H(X_1,...,X_N) \le \sum_{i=1}^{N} H(X_i)$$

$$D(p || q) = 0 \leftrightarrow p = q$$

$$I(X;Y | Z) \ge 0$$

$$H(X) = \log(\#X) \leftrightarrow p(X) = k$$

$$H(X | Y) = H(X) \leftrightarrow X, Y \text{ independent}$$

$$H(X_1,...,X_N) = \sum_{i=1}^{N} H(X_i) \leftrightarrow X_i \text{ independent}$$

#X≡number of symbols (values) of X

Jensen's inequality

Highlights

 $\bullet H(X) \le \log(\#X)$

EXAMPLE: If X can have 4 values, its entropy cannot be greater than $log_2(4)=2$ bits

• $H(X) = \log(\# X) \leftrightarrow p(X) = k$

An information source provides maximum information when its values (symbols) have equal probabilities

• $H(X|Y) \leq H(X)$

Any extra knowledge will never increase the information given by a source

• $H(X|Y) = H(X) \leftrightarrow X, Y \text{ independent}$

If extra knowledge about another information source Y does not vary the information provided by X, then X and Y are independent

25

Markov chains

Given the random variables X,Y,Z, these variables conform a Markov chain $X \to Y \to Z$ if $p(z \mid x, y) = p(z \mid y)$

Example:

Possible sequences:

B3b, A1a, A2b, etc.

$$p(x = A) = 0.4 p(y = 1 | x = A) = 0.5 p(z = a | y = 1) = 1$$

$$p(x = B) = 0.6 p(y = 2 | x = A) = 0.5 p(z = b | y = 2) = 1$$

$$p(y = 3 | x = A) = p(y = 4 | x = A) = 0 p(z = b | y = 3) = 1$$

$$p(y = 1 | x = B) = p(y = 2 | x = B) = 0 p(z = a | y = 4) = 0.5$$

$$p(y = 3 | x = B) = 0.9 p(z = b | y = 4) = 0.5$$

$$p(y = 4 | x = B) = 0.1$$

$$p(z = a | y = 1) = 1$$

 $p(z = b | y = 2) = 1$
 $p(z = b | y = 3) = 1$
 $p(z = a | y = 4) = 0.5$
 $p(z = b | y = 4) = 0.5$

Signal processing inequality

$$X \to Y \to Z \Rightarrow I(X;Y) \ge I(X;Z)$$

The signal processing inequality leads to the assertion that if X is processed to generate Y, and Y is post-process to generate Z, then, X has more information on Y tan on Z. Thus, Z does not provides more information about X tan Y..

$$X \to Y \to f(Y) \Rightarrow I(X;Y) \ge I(X;f(Y))$$

If Y is generated from X, the information that Y contains regarding X, is not going to be increased if Y is processes by any signal processing algorithm.

$$X \to Y \to Z \Rightarrow I(X;Y|Z) \le I(X;Y)$$

In a Markov chain, knowing the value of Z decreases (or just keeps) the dependency between X and Y.

Coding and compression: Block Code

Example:

\mathcal{X}_{i}	$\Pr\{X = x_i\}$	$C(x_i)$
1	1/2	0
2	1/4	10
3	1/8	110
4	1/8	111

AVERAGE LENGTH OF THE CODE

$$L(C) = E[l(C(x_i))]$$
Length of code C(xi)

$$H(X) = L(C) = 1.75bits$$

Example:

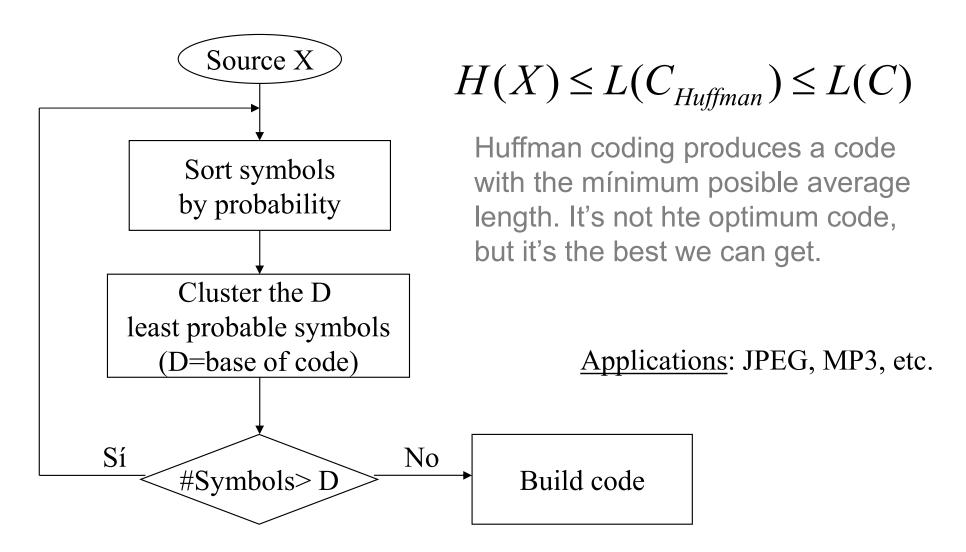
X_i	$\Pr\{X = x_i\}$	$C(x_i)$
1	1/3	0
2	1/3	10
3	1/3	11

$$H(X) = 1.58bits$$
$$L(C) = 1.66bits$$

 $H(X) \leq L(C)$

This is a fundamental property in statistical coding

Huffman coding



Huffman coding: D=2

X_i	p_{i}
x1 x2 x3 x4 x5 x6	0.4 0.3 0.1 0.1 0.06 0.04

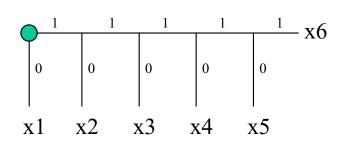
X_i	p_{i}
x1	0.4
x2	0.3
x3	0.1
x4	0.1
(x5x6)	0.1

X_i	p_{i}
x1	0.4
x2	0.3
x4(x5x6)	0.2
x3	0.1

X_i	p_i
x 1	0.4
x2	0.3
x3(x4(x5x6))	0.3

$$\begin{array}{c|cc} x_i & p_i \\ \hline x2(x3(x4(x5x6))) & 0.6 \\ x1 & 0.4 \\ \end{array}$$

$$H(X) = 2.1435 bits$$



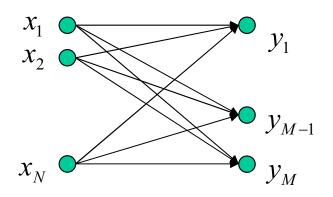
$$L(C_{Huffman}) = 2.2bits$$

X_i	$C(x_i)$
x1	0
x2	10
x3	110
x4	1110
x5	11110
x6	11111

Channel characterization

Memoryless channel

$$P(y[n]|x[n],x[n-1],x[n-2],...) = P(y[n]|x[n])$$



$$y_{1} = \begin{pmatrix} P(y_{1} | x_{1}) & P(y_{2} | x_{1}) & \dots & P(y_{M} | x_{1}) \\ P(y_{1} | x_{2}) & P(y_{2} | x_{2}) & \dots & P(y_{M} | x_{2}) \\ \dots & \dots & \dots & \dots \\ P(y_{1} | x_{N}) & P(y_{2} | x_{N}) & \dots & P(y_{M} | x_{N}) \end{pmatrix}$$

Channel with memory

$$P(y[n]|x[n],x[n-1],x[n-2],...) = P(y[n]|x[n]x[n-1])$$
 Memory=1

$$P(y[n]|x[n],x[n-1],x[n-2],...) = P(y[n]|x[n]x[n-1]x[n-2])$$
 Memory=2

$$C = \max_{p(X)} I(Y; X) \qquad 0 \le C \le \min(\log \# X, \log \# Y)$$

Example: Binary Channel with no noise

$$\begin{array}{cccc}
0 & & & & & & \\
1 & & & & & \\
\end{array}
\qquad Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{array}{cccc}
P(X=0)=p \\
P(X=1)=1-p
\end{array}$$

$$I(Y;X) = \sum_{x \in \Xi, y \in \Psi} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} =$$

$$= p(x=0, y=0) \log \frac{p(x=0, y=0)}{p(x=0)p(y=0)} + p(x=0, y=1) \log \frac{p(x=0, y=1)}{p(x=0)p(y=1)} + p(x=1, y=0) \log \frac{p(x=1, y=0)}{p(x=1)p(y=0)} + p(x=1, y=1) \log \frac{p(x=1, y=1)}{p(x=1)p(y=1)}$$

Example: Binary channel with no noise

$$p(X = x, Y = y) = p(X = x)p(Y = y | X = x) = \begin{cases} p(X = x) & x = y \\ 0 & x \neq y \end{cases}$$

$$p(Y = y) = \sum_{x} p(Y = y | X = x)p(X = x) = p(X = y)$$

$$I(Y; X) = p(x = 0, y = 0) \log \frac{p(x = 0, y = 0)}{p(x = 0)p(y = 0)} + p(x = 0, y = 1) \log \frac{p(x = 0, y = 1)}{p(x = 0)p(y = 1)}$$

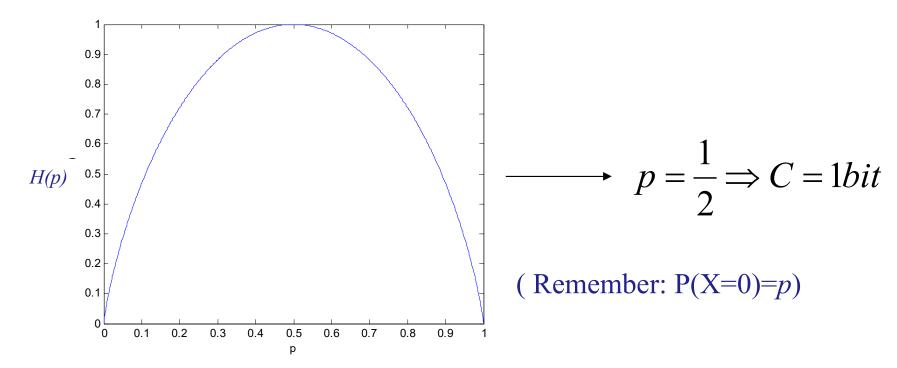
$$+ p(x = 1, y = 0) \log \frac{p(x = 1, y = 0)}{p(x = 1)p(y = 0)} + p(x = 1, y = 1) \log \frac{p(x = 1, y = 1)}{p(x = 1)p(y = 1)}$$

$$= p(x = 0) \log \frac{p(x = 0)}{p(x = 0)} + p(x = 1) \log \frac{p(x = 1)}{p(x = 1)p(x = 1)}$$

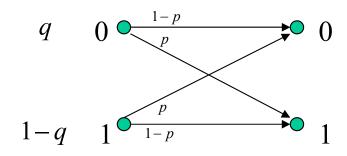
$$= p \log \frac{1}{p} + (1 - p) \log \frac{1}{1 - p} = H(X)$$

Example: Binary channel with no noise

$$C = \max_{p(X)} I(Y; X) = \max_{p} \left\{ p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p} \right\}$$



Example: Binary Symetric Channel (BSC) – channel with noise



$$q = \frac{1}{2} \Rightarrow C = \max_{q} I(Y; X) = 1 - H(p)$$

$$H(Y | X = 0) = p(Y = 0 | X = 0) \log \frac{1}{p(Y = 0 | X = 0)} + p(Y = 1 | X = 0) \log \frac{1}{p(Y = 1 | X = 0)}$$
$$= (1 - p) \log \frac{1}{1 - p} + p \log \frac{1}{p} = H(p) = H(Y | X = 1)$$

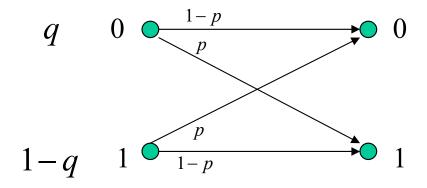
$$P(Y = 0) = P(X = 0)P(Y = 0 | X = 0) + P(X = 1)P(Y = 0 | X = 1) = q(1-p) + (1-q)p$$

$$P(Y = 1) = P(X = 0)P(Y = 1 | X = 0) + P(X = 1)P(Y = 1 | X = 1) = qp + (1-q)(1-p)$$

$$H(Y) = P(Y = 0)\log\frac{1}{P(Y = 0)} + P(Y = 1)\log\frac{1}{P(Y = 1)} \le H(X) \le 1bit$$

Only equal if Y is uniform

Example: Binary Symetric Channel (BSC) – channel with noise



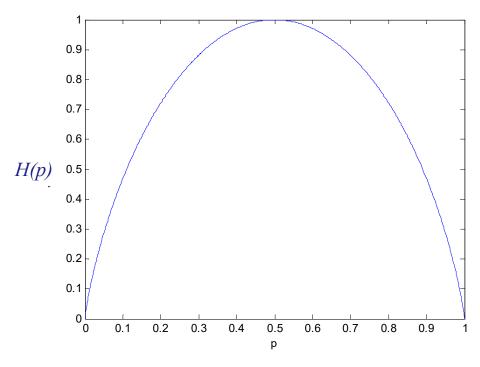
$$q = \frac{1}{2} \Rightarrow C = \max_{q} I(Y; X) = 1 - H(p)$$

$$I(Y;X) = H(Y) - H(Y | X)$$

$$= H(Y) - \sum_{x} p(x)H(Y | X = x) \le 1 - \sum_{x} p(x)H(p) = 1 - H(p) = C$$
If Y is uniform

Example: Binary channel with noise (BSC)

$$C = \max_{p(X)} I(Y; X) = 1 - H(p)$$



$$p=0 \text{ or } p=1 \rightarrow C=1 \text{ bit}$$

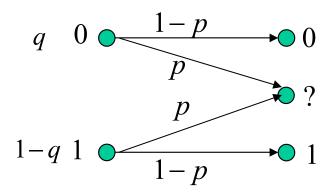
 $p=0.5 \rightarrow C=0 \text{ bits}$

(Remember: P(Y=1|X=0)=P(Y=0|X=1)=p)

Challenge: Channel capacity

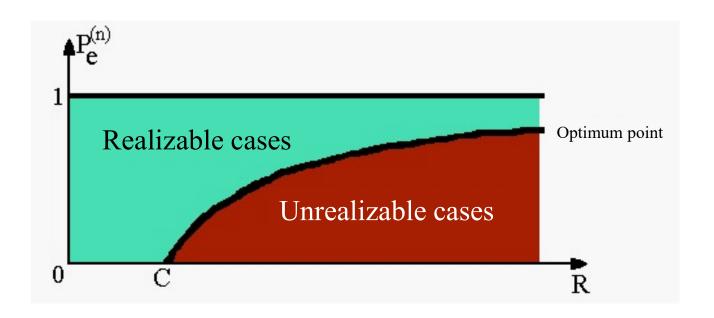
Given an "erasure channel", where the data is received corrected ("0" or "1") or

not received at all ("?") show that the capacity *C*=*1-p*



$$Q = \begin{pmatrix} 1-p & p & 0 \\ 0 & p & 1-p \end{pmatrix}$$

Channel coding theorem



It is also possible to express channel capacity in bits per second. Given C and the transmission rate R, it is proved that it is possible to achieve an error probability Pe=0 if R<C. Also, if R>C then the error probability increases.

It is posible to find codes that achieves Pe=0 and also that increase the transmission speed increasing the error rate, however the theorem does not indicate how are these codes.

Case study: Are brains good at processing information? (Introduction to Information Theory, J.V. Stone, 2018)

- Neurons communicate to each other continuosly
 - This communication must be performed efficiently
- Horace Bellow supports the *efficiency coding hypothesis*, where the sensory input must be encoded efficiently before being sent to the brain

Case study: Are brains good at processing information?

(Introduction to Information Theory, J.V. Stone, 2018)

- Information in spiking neurons
 - The neurons propagate action potentials (AP, a.k.a. spikes)
 - If the spikes are encoded as 0's (no AP) and 1's (AP) it is possible to compute the entropy of the neuron (information source)
 - Considering an average firing rate of r spikes/s the capacity of the channel might be equal to r bits/s
 - However it can be proven that the information rate is bigger than that
 - The trick is that the neurons also use temporal information to encode information, so that one single spike encodes more than 1 bit

Case study: Are brains good at processing information? (Introduction to Information Theory, J.V. Stone, 2018)

- Mutual information between the input and output of a neuron
 - An experiment showed that a neuron (mechanical receptor of a cricket) generates 600 bits/s
 - o 300 bits/s are related to the input, the rest is noise
 - Thinking that a neuron works with "packets" of 300 bits is out of line
 - There are theories that indicate that those 300 bits are actually divided in packets of 3 bits every 10 ms, providing continuous information about changes in the output (speed of an object)

Case study:

Are brains good at processing information?

(Introduction to Information Theory, J.V. Stone, 2018)

- Shannon optimal coding: maximizing entropy
 - In the human eye, the information provided by "Red" and "Green" receptors is very similar
 - Using two different nerve fibre per receptor is a waste of channel capacity (since there is a lot of redundancy over time)
 - However, it can be proved that the addition and substraction of the outputs of the R and G receptors leads to signals with uniform distributions
 - Also the substraction and summation are independent of each other
 - o So:
 - 1. The use of two, instead of three, separate fibres is now justified
 - 2. The entropy is maximized so that the information rate is highly increased
 - Ganglion cells in the retina perform this operations, but they use several receptor outputs to compress information and reduce the necessary nerve fibres: 126 million receptors → 1 million nerve fibre

SUMMARY

- Entropy
- Mutual information
- Signal processing inequality
- Huffman coding
- Channel Capacity
- Channel coding theorem

