Sistemas de Radiocomunicaciones

Práctica 1 Curso 2015/16

Práctica 1

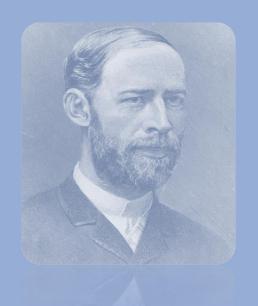
Refuerzo de conceptos fundamentales de radiocomunicación

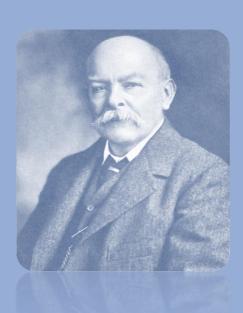
Contenidos

Parte 1 Repaso Ondas y parámetros

- Introducción. Repaso de lo estudiado en Física II y F. Electrotecnia.
- Soluciones de la Ecuación de Onda. Dominio temporal y fasorial.
- Parámetros de una onda con variación temporal armónica.
- Concepto de polarización.
- Actividades. [Cálculos, Preguntas Test/Abiertas] [Recurso Applets/MatLab]

Parte 2 Decibelios y conversión de unidades


- Introducción. Repaso de lo estudiado en F. Electrónica.
- Unidades.
- Fórmulas en Radiocomuniación.
- Actividades. [Cálculos, Transformaciones, Operaciones] [Recurso MatLab]


Parte 3 Legislación en Radiocomunicaciones

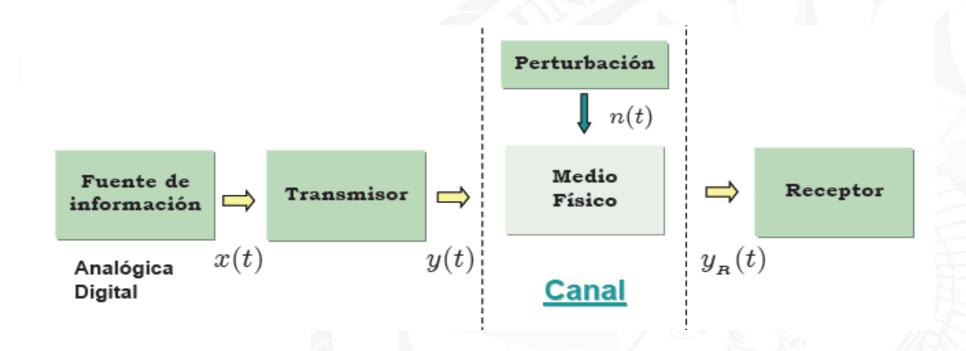
- Introducción. Repaso de lo estudiado en las clases de teoría.
- El reglamento de Radiocomunicaciones.
- Reales Decretos, Normas UNE e ITU. Enlaces de interés.
- Actividades. [Consulta y síntesis] [Recurso Internet]

Parte 1 Repaso Ondas y Parámetros

- El bloque de "Campos y Ondas" presenta el primer contacto del estudiante de la titulación con el fenómenos de la onda electromagnética, que es el soporte físico de la transmisión de la información a velocidad casi instantánea. Se introducirán los modelos matemáticos de los campos electromagnéticos que permiten comprender el comportamiento de las ondas electromagnéticas en entornos reales.
- Los sistemas de telecomunicación son sistemas de comunicación a distancia que se caracterizan por la utilización de señales eléctricas como soporte de la información. Todo sistema de comunicación requiere tres elementos constitutivos fundamentales: emisor, canal y receptor.

EMISOR → CANAL → RECEPTOR

 En los sistemas de telecomunicación existen dos tipos de canales que permiten transferir señales eléctricas del emisor al receptor: las líneas de transmisión y los canales radioeléctricos.



- En el caso de las líneas de transmisión existe una conexión física entre el emisor y el receptor que guía la propagación de las **ondas electromagnéticas**.
- En los canales radioeléctricos la señal que lleva la información enlaza emisor y receptor por medio de ondas electromagnéticas que se propagan en el medio existente entre ambos.

- Se requiere la aplicación de la Teoría Electromagnética en el estudio del comportamiento de las señales en los canales (propagación en espacio y en líneas), y en el diseño de los procedimientos de acoplamiento entre estos canales y los emisores y receptores (antenas).
- El objetivo de esta asignatura será dotar al alumno de una serie de conocimientos de Teoría Electromagnética, que conozca y comprenda las ecuaciones que rigen el comportamiento de los campos electromagnéticos con variación temporal, y en particular de las <u>ondas electromagnéticas</u>, pues constituyen la base de los sistemas de telecomunicación actuales.
- Su estudio se completará en la asignatura de Radiocomunicaciones.

Práctica 1 — Parte 1. Introducción Esquema de un sistema de telecomunicación

El soporte de la información en cualquier sistema de radiocomunicación, y en general de telecomunicaciones, es la onda electromagnética.

Práctica 1 — Parte 1. Introducción La Ecuación de Onda. Dominios del tiempo y de la frecuencia

Aptdo C.1 – La Ecuación de Onda Punto de Partida

Para medios lineales, homogéneos e isótropos:

 $\vec{J}(\vec{r},t) = \sigma \vec{E}(\vec{r},t)$

Densidad de corriente de conducción:
 Vector de Desplazamiento Eléctrico:

 $\vec{D}(\vec{r},t) = \varepsilon_0 \varepsilon_1 \vec{E}(\vec{r},t) = \varepsilon \vec{E}(\vec{r},t)$

- Vector de Inducción Magnética:

 $\vec{B}(\vec{r},t) = \mu_0 \mu_r \vec{H}(\vec{r},t) = \mu \vec{H}(\vec{r},t)$

Ecuaciones de Maxwell en forma diferencial:

Ley de Gauss para el campo eléctrico

 $\nabla \cdot \vec{D}(\vec{r},t) = \rho(\vec{r},t)$

- Ley de Gauss para el campo magnético

 $\nabla \cdot \vec{B}(\vec{r},t) = 0$

- Ley de Faraday

 $\nabla \times \vec{E}(\vec{r},t) = -\frac{\partial \vec{B}(\vec{r},t)}{\partial t}$

- Ley de Ampère-Maxwell

 $\nabla \times \vec{H}(\vec{r},t) = \vec{J}(\vec{r},t) + \frac{\partial \vec{D}(\vec{r},t)}{\partial t}$

210

213

Aptdo C.1 – La Ecuación de Onda En el dominio del tiempo

 Aplicando el operador rotacional a la Ley de Faraday, y después de hacer varias operaciones vectoriales y sustituir en el resultado la Ley de Gauss y la Ley de Ampère-Maxwell:

$$\nabla^2 \vec{E}(\vec{r},t) - \varepsilon \mu \, \frac{\partial^2 \vec{E}(\vec{r},t)}{\partial t^2} = \nabla \, \frac{\rho(\vec{r},t)}{\varepsilon} + \mu \, \frac{\partial \vec{J}(\vec{r},t)}{\partial t}$$

 De forma análoga, aplicando el operador rotacional a la Ley de Ampère-Maxwell, y después de hacer varias operaciones vectoriales y sustituir en el resultado la Ley de Gauss y la Ley de Faraday:

$$abla^2 \vec{B}(\vec{r},t) - \varepsilon \mu \frac{\partial^2 \vec{B}(\vec{r},t)}{\partial t^2} = -\mu \nabla \times \vec{J}(\vec{r},t)$$

. En un medio sin fuentes ambas tienen la misma forma:

$$\nabla^2 \vec{A}(\vec{r}, t) = \varepsilon \mu \frac{\partial^2 \vec{A}(\vec{r}, t)}{\partial t^2}$$

211

Aptdo C.1 – La Ecuación de Onda

En el dominio de los fasores

Consideraremos variación temporal armónica:

$$\vec{E}(\vec{r},t) = \vec{E}_{0}(\vec{r}) \cos \left[wt + \phi_{E}(\vec{r})\right]$$

El fasor del campo se escribía como:

$$ec{E}(ec{r}) = ec{E}_{_{\mathrm{O}}}(ec{r}) \,\,\, e^{j\phi_{_{E}}(ec{r})}$$

Ecuaciones de Maxwell en forma fasorial:

$$\nabla \cdot \vec{D}(\vec{r}) = \rho(\vec{r})$$

$$\nabla \cdot \vec{B}(\vec{r}) = 0$$

$$abla imes \vec{E}(ec{r}) = -j\omega \vec{B}(ec{r})$$

$$abla imes ec{H}(ec{r}) = \overline{J}(ec{r}) + j\omega arepsilon \overline{E}(ec{r})$$

Aptdo C.1 – La Ecuación de Onda/

En el dominio de los fasores

- Hipótesis:
 - Variación temporal armónica
 - Medio lineal, homogéneo, isótropo y no dispersivo
 - Medio sin fuentes
- Ecuación de onda para el campo eléctrico:

$$abla^2 \vec{E}(\vec{r}) = \gamma^2 \vec{E}(\vec{r})$$

Se define la constante de propagación como:

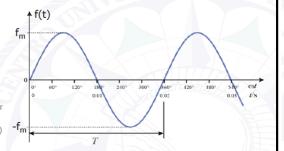
$$\gamma = \sqrt{-\omega^2 \mu \varepsilon + j\omega \mu \sigma} = \alpha + j\beta$$

- En un medio sin pérdidas (σ=0 S/m):
 - Constante de atenuación $\alpha = 0$ Np/m
 - Constante de fase
- $\beta = \omega \sqrt{\mu \varepsilon} \quad rad / m$

214

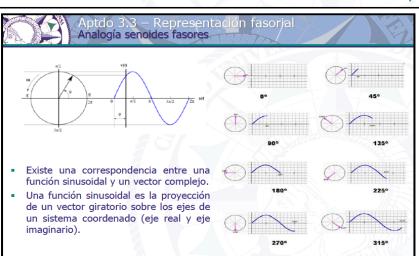
Práctica 1 – Parte 1. Introducción Dominios del tiempo y de la frecuencia en F. Electrotecnia

Aptdo 3.1 – Formas de onda periódicas Parámetros de las señales períodicas senoidales


Señal alterna:

$$f(t) = f_m \cdot \cos(\omega t + \varphi)$$

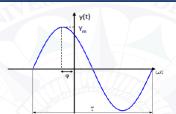
$$\omega = 2\pi f = \frac{2\pi}{T}$$


ω, pulsación o frecuencia angular

- T, período (segundos, s) φ, ángulo de fase (radianes, rad)
- f, frecuencia (hertzios, Hz)

El ángulo de fase en ocasiones se expresará en grados pero no es correcto.

- La frecuencia de red común en Europa es de 50Hz.
- En los Estados Unidos y en la mayoría de los demás países del continente americano, la tensión de red tiene una frecuencia de 60 Hz.



Una función sinusoidal queda representada unívocamente por su fasor equivalente.

Aptdo 3.1 — Formas de onda periódicas Parámetros de las señales períodicas senoidales

- Valor instantáneo: y (t) = Y_m · cos (ωt+φ)
- Valor máximo:
- Valor pico a pico: Y_{pp} = 2 · Y_m
- $Y_{\text{med}} = \frac{1}{T} \int_{0}^{T} y(t) dt = 0$ Valor medio:

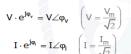
Se puede interpretar como la componente de continua de la onda sinusoidal. Como en una señal sinusoidal el semiciclo positivo es idéntico al negativo, su valor medio es nulo,

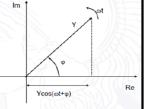
Valor eficaz:

$$Y = Y_{rms} = \sqrt{\frac{1}{T} \int_0^T y(t) dt} = \frac{Y_m}{\sqrt{2}}$$

Su importancia se debe a que este valor es el que produce el mismo efecto calorífico que su equivalente en corriente continua.

Aptdo 3.3 – Representación fasorial Concepto de Fasor

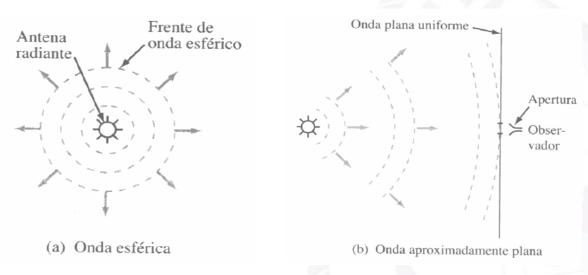

Existe una correspondencia entre una función sinusoidal y(t) y un número complejo Y:


$$y(t) = \sqrt{2}Y \cdot \cos(\omega t + \phi) \iff \Upsilon = Y \cdot e^{j\phi}$$

 Se denomina fasor a la cantidad compleja Υ que contiene la información del valor eficaz y fase de una señal sinusoidal.

$$\Upsilon = Y \cdot e^{j\phi} = Y \angle \phi$$

En corriente alterna representaremos las funciones sinusoidales v(t) e i(t) mediante fasores equivalentes:



Práctica 1 — Parte 1. La Ecuación de Onda Soluciones de la ecuación de onda

- Tres tipos de soluciones:
 - Ondas esféricas
 - Ondas cilíndricas
 - Ondas planas

- Principales características de una onda plana:
 - Las ondas planas son ondas transversales
 - compuestas por un campo eléctrico y magnético simultáneamente.
 - ambos campos oscilan perpendicularmente entre sí;
 - ambos campos son perpendiculares a la dirección de propagación
 - la dirección de propagación es la dirección del producto vectorial ExB.

Práctica 1 – Parte 1. Polarización de la Onda Concepto y tipos de polarización

- A una distancia lo suficientemente grande de la fuente todas las ondas pueden considerarse ondas planas.
 - ✓ Los campos eléctrico y magnético son perpendiculares entre sí y perpendiculares a la dirección de propagación.
 - ✓ Los campos oscilan sólo en un determinado plano.
 - ✓ La forma trazada sobre un plano fijo por el vector campo puede ser:
 - una recta → polarización lineal
 - un círculo → polarización circular
 - una elipse → polarización elíptica
- Fasor de intensidad de campo eléctrico asociado a una onda plana:

$$\vec{E}(\vec{r}) = \vec{E}_0(\vec{r}) e^{-\gamma \hat{v} \cdot \vec{r}}$$

donde:

- γ es la constante de propagación $\gamma = \alpha + j\beta$
- v es el vector unitario que identifica la dirección de propagación
- \overline{r} es el vector de posición en coordenadas cartesianas $\overline{r} = x\hat{x} + y\hat{y} + z\hat{z}$
- E_0 es un vector complejo perpendicular a la dirección de propagación $\overline{E}_0 \perp \hat{v}$

Práctica 1 — Parte 1. Polarización de la Onda Concepto y tipos de polarización

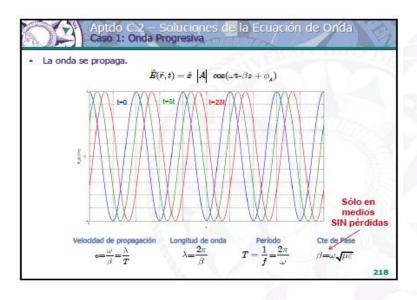
$$\gamma = \alpha + j\beta$$

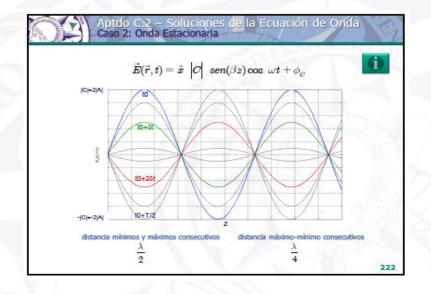
es la constante de propagación de una onda donde

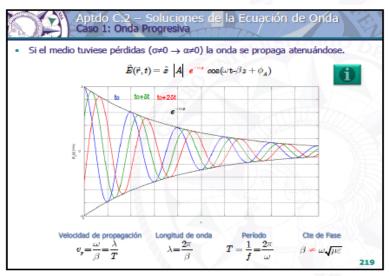
$$\alpha = \omega \sqrt{\mu \varepsilon} \left\{ \frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2} - 1 \right] \right\}^{\frac{1}{2}} \quad \text{Np/m} \quad \text{es la constante de atenuación}$$

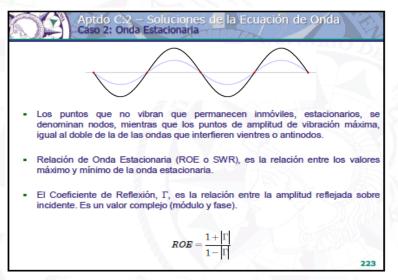
$$\beta = \omega \sqrt{\mu \varepsilon} \left\{ \frac{1}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2} + 1 \right] \right\}^{\frac{1}{2}} \quad \text{rad/m} \quad \text{es la constante de fase}$$

 σ, μ, \mathcal{E} son los parámetros constitutivos del medio a la frecuencia de variación del campo (w) y por lo tanto dependerán del valor de dicha frecuencia. Estos parámetros serán, en general, dependientes de la frecuencia.




Práctica 1 — Parte 1. Polarización de la Onda Concepto y tipos de polarización


- En un medio sin pérdidas $\alpha=0$ por lo que $\gamma=j\beta$ con $\beta=\omega\sqrt{\mu\varepsilon}$ Se observa que el campo en un punto fijo del espacio (z=cte) varía (**progresa**) como un coseno de amplitud constante y frecuencia ω ; independientemente del valor de "z"
- En un medio con pérdidas $\alpha \neq 0$ se observa que el campo en un punto del espacio (z=cte) varía (**progresa**) como un coseno de frecuencia ω y amplitud que decrece a medida que la coordenada "z" aumenta.
- Existe un caso en el que la onda se encuentra con una discontinuidad y parte o la totalidad de la onda se ve reflejada en dicha discontinuidad con lo que en el medio se propaga la onda progresiva y la regresiva dando lugar a la aparición de lo que se conoce como onda estacionaria.



Práctica 1 – Parte 1. Parámetros de la Onda Casos según las condiciones de contorno

Práctica 1 – Parte 1. Parámetros de la Onda Frecuencia, longitud de onda, velocidad de propagación

Período

- Duración, en el dominio temporal, del ciclo
- Símbolo y unidades: T, segundos (s)

Frecuencia

- Número de ciclos en un segundo. f= 1/T
- Símbolo y unidades: f, hertzios (Hz)

Longitud de onda

- Duración, en distancia, del ciclo.
- Símbolo y unidades: λ, metros (m)

Velocidad de propagación

- Símbolo y unidades: c, metros/segundos (m/s)
- Amplitud o intensidad de campo
 - Símbolo y unidades: E₀ (V/m) o H₀ (A/m)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

$$\lambda = \frac{2\pi}{\beta}$$

Cte de Fase
$$\beta = \omega \sqrt{\mu \varepsilon}$$
 en medios sin pérdidas

$$c = \frac{\lambda}{T} = \lambda \cdot f = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu \varepsilon}}$$

Práctica 1 – Parte 1. Parámetros de la Onda Espectro de radiaciones electromagnéticas

		No ioni:	zante				loniz	ante	
		hf < 12	hf < 12,4 eV						
Subradio frecuencias	Radio frecuencias	Microondas	Infrarrojos	Luz visible	Ultravioletas no ionizantes	Ultravioletas ionizantes	Rayos X	Rayos γ	Rayos cósmicos
0 1	30 kHz l	1 GHz	300 GHz	385 THz	750 THz	3 Phz I	30 PHz	3 EHz	>3000 EHz
30 kHz	1 GHz	300 GHz	385 THz	750 THz	3000 THz	30 PHz	300 EHz	3000 EHz	
∞ 100 km	100 km 300 mm	300 mm 1 mm	1 mm 780 nm	780 nm 400 nm	400 nm 100 nm	100 nm 10 nm	10 nm 1 pm	100 pm 0,1 pm	< 0,1 pm

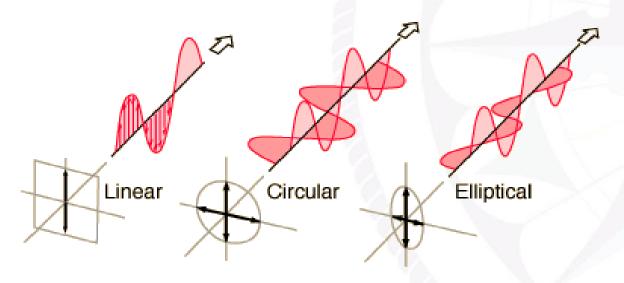
Radiofrecuencias

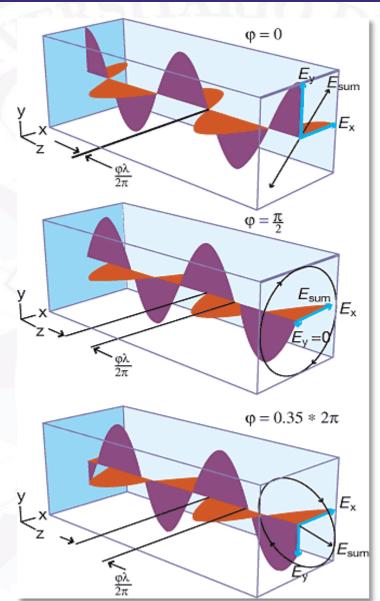
Bandas de frecuencia de microondas

Banda	Р	L	S	С	Х	Ku	K	Ka	Q	U	٧	Е	w	F	D
Inicio (GHZ)	0,2	1	2	4	8	12	18	26,5	30	40	50	60	75	90	110
Final (GHZ)	1	2	4	8	12	18	26,5	40	50	60	75	90	110	140	170

Nombre	Abreviatura inglesa	Banda ITU	Frecuencias	Longitud de onda
			Inferior a 3 Hz	> 100.000 km
Extra baja frecuencia	ELF	1	3-30 Hz	100.000–10.000 km
Super baja frecuencia	SLF	2	30-300 Hz	10.000–1000 km
Ultra baja frecuencia	ULF	3	300–3000 Hz	1000–100 km
Muy baja frecuencia	VLF	4	3–30 kHz	100–10 km
Baja frecuencia	LF	5	30–300 kHz	10–1 km
Media frecuencia	MF	6	300–3000 kHz	1 km – 100 m
Alta frecuencia	HF	7	3–30 MHz	100–10 m
Muy alta frecuencia	VHF	8	30–300 MHz	10–1 m
Ultra alta frecuencia	UHF	9	300–3000 MHz	1 m – 100 mm
Super alta frecuencia	SHF	10	3-30 GHz	100-10 mm
Extra alta frecuencia	EHF	11	30-300 GHz	10–1 mm

Práctica 1 – Parte 1. Parámetros de la Onda Espectro de radiaciones electromagnéticas

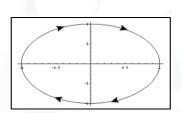

Práctica 1 — Parte 1. Polarización de la Onda Concepto y tipos de polarización


Polarizaciones:

- Lineal:
$$\begin{vmatrix} \vec{E}_R \end{vmatrix} = 0$$
 ó $\begin{vmatrix} \vec{E}_I \end{vmatrix} = 0$ ó $\vec{E}_R \parallel \vec{E}_I$

- Circular:
$$|\vec{E}_R| = |\vec{E}_I|$$
 y $\vec{E}_R \wedge \vec{E}_I$

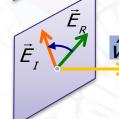
Elíptica: Resto de los casos

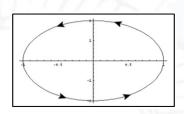


Práctica 1 – Parte 1. Polarización de la Onda Concepto y tipos de polarización

- Sentido de giro del campo cuando describe la elipse de polarización.
 - Dextrógira, a derechas o positiva:

$$\left(\vec{E}_{R} \cdot \vec{E}_{I}\right) \times \hat{v} < 0$$

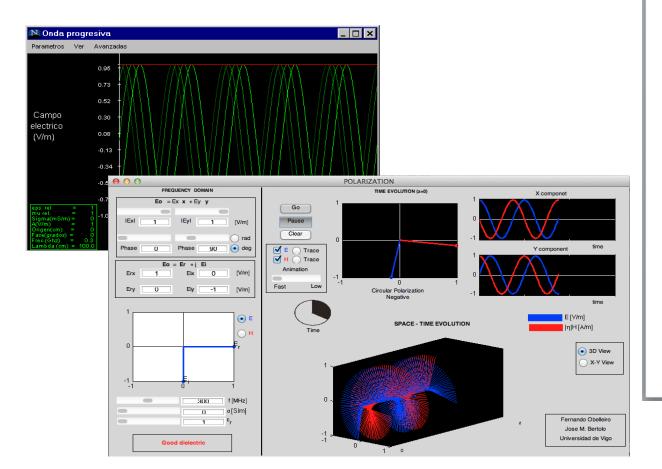




Levógira, a izquierdas o negativa:

$$(\vec{E}_R \cdot \vec{E}_I) \times \hat{v} > 0$$

 Relación Axial, relación entre el eje mayor y el eje menor de la elipse. Esta relación se corresponde con el cociente entre el módulo máximo del vector campo y su módulo mínimo:


$$\mathbf{r.a.} = \frac{\left| \vec{E} \right|_{\text{max}}}{\left| \vec{E} \right|_{\text{min}}} = \frac{\left| \vec{H} \right|_{\text{max}}}{\left| \vec{H} \right|_{\text{min}}}$$

- Casos particulares:
 - Polarización Lineal: r.a.=∞ ó 0
 - Polarización circular: r.a.=1

Práctica 1 – Parte 1. Actividades Actividades propuestas y ejercicios puntuables

- Cálculos básicos
- Análisis de polarizaciones
- Preguntas de control/evaluación
- Ejercicios 1 al 4

LABORATORIO DE SRCOM - CURSO 2013/2014 Cuestionario Práctica 1: Refuerzo conceptos fundamentales

GRUPO	NOMBRE	
GRUPO	NOMBRE	

Parámetros de las Ondas

Eiercicio 1

Calcule la longitud de onda asociada a las siguientes frecuencias, tanto en el vacío como en un medio de permitividad, relativa z.=4:

Frecuencia	λο	λ (ε,=4)
1 KHz		
3 MHz		
2 GHz		

Ejercicio 2

En referencia a las ondas electromagnéticas ¿qué proposición es falsa?

- a) Están formadas por un campo eléctrico y otro magnético perpendiculares entre sí.
- b) La velocidad de propagación es constante e independiente del medio considerado.
- c) Transportan energía de un punto a otro sin que exista un transporte neto de materia.

Eiercicio 3

Indique la polarización de los siguientes fasores de campo eléctrico:

- a) $E(\hat{r}) = E \hat{x} e^{-j\theta z}$
- b) $E(\vec{r}) = E_0(\hat{x} + j\hat{y})e^{-j\theta z}$
- c) $\vec{E}(\vec{r}) = E_0(2\hat{x} + j3\hat{y})e^{-j\theta z}$

¿En qué dirección se propagan las ondas anteriores?

Abra el applet correspondiente a las ondas progresivas con pérdidas. Especifique en primer lugar los siguientes parámetros: Medio: z =1, μ=1, σ=0 y Excitación: A=1V/m, f=300MHz. Aumente progresivamente la conductividad del medio material y comente que observa, por ejemplo utilizando la secuencia σ=0, 1, 2, 4, 8, 16.

¿Observa variación de la longitud de onda? ¿» de la frecuencia? ¿A qué se debe?

| Parámetros de las Ondas | | |

Parte 2 El decibelio: unidades y cálculos

Medidas en decibelios

- La ganancia de potencia se suele expresar en decibelios (dB), siendo G_{dB} = 10 log G = 10 log (P_o / P_i)
 - Si la salida es mayor que la entrada (amplificador), la ganancia en dB es positiva.
 - Si la salida es menor que la entrada (atenuador), la ganancia en dB es negativa.
- En amplificadores en cascada, la ganancia total es el producto de sus ganancias:
 G = G₁*G₂; aplicando log en ambos miembros se obtiene

$$G_{dB} = 10 \log(G) = 10 \log(G_1 * G_2) = 10 \log(G_1) + 10 \log(G_2) = G_{1dB} + G_{2dB}$$

- Ventajas al trabajar en dB: se suman las ganancias y atenuaciones de cada etapa.
- Si G = P_o/P_i = (V_o I_o)/(V_i I_i) = A_vA_i = (Av)² (R_i/R_L); siendo A_i = A_v (R_i/R_L) convirtiendo a dB:
 - $G_{dB} = 10 \log A_v^2 + 10 \log R_i 10 \log R_L$
 - Si R_i = R_L, entonces se simplifica a A_{vdB} = 20 log |A_v|
- No confundir dB con dBmV, dBW, dBmW igual a dBm. Son diferentes notaciones que dependen del nivel de referencia establecido. Ejemplos:
 - dBV = 20 log (V/ 1V)
 - dBW = 10 log (P / 1 w)
 - dBmW = dBm = 10 log (P / 1 mW)

Práctica 1 — Parte 2. El deciBelio Unidades

- El decibelio es una unidad logarítmica que debe su nombre a Alexander Graham Bell.
- Si comparamos dos potencias p₁ y p₂, la relación de potencias evaluada en dB es:

$$10 \cdot \log_{10} \left(\frac{p_2}{p_1} \right) \qquad \left[dB \right]$$

- Por tanto el decibelio es una unidad de medida <u>relativa</u>
- Cuando se comparan tensiones o intensidades de campo eléctrico debe tenerse en cuenta que la potencia es proporcional V² o a [E]². Por ello, si comparamos dos tensiones o dos intensidades de campo eléctrico E₁ y E₂, la relación evaluada en dB es:

$$20 \cdot \log_{10} \left(\frac{\left| \mathcal{F}_{2} \right|}{\left| \mathcal{F}_{1} \right|} \right) \qquad \left[dB \right]$$

Práctica 1 – Parte 2. El deciBelio Unidades

- También se emplea el decibelio como medida del nivel de señal. Se toma entonces como referencia un nivel determinado, lo cual se indica con una letra después de dB.
- Por ejemplo, para niveles de potencia es habitual tomar el valor en decibelios referido a 1 W y se habla entonces de dBW.

$$P[dBW] = 10 \cdot \log_{10} \left(\frac{p[W]}{1W} \right) = 10 \cdot \log_{10}(p)$$

En consecuencia:

Potencia
$$[dBW] = 10 \cdot \log_{10}(p[W]) \Rightarrow p[W] = 10^{\frac{P[dBW]}{10}}$$

Potencia $[dBm] = 10 \cdot \log_{10}(p[mW]) \Rightarrow p[mW] = 10^{\frac{P[dBm]}{10}}$

Potencia $[dB\mu] = 10 \cdot \log_{10}(p[\mu W]) \Rightarrow p[\mu W] = 10^{\frac{P[dB\mu]}{10}}$

Práctica 1 – Parte 2. El decibelio Unidades

Lo mismo es aplicable a intensidades de campo:

$$E[dBV / m] = 20 \cdot \log_{10} (e[V / m])$$

$$E[dBmV / m] = 20 \cdot \log_{10} (e[mV / m])$$

Equivalencias:

$$E[dBmV / m] = E[dBV / m] + 120$$
$$E[dBV / m] = E[dBmV / m] - 120$$

Relación tensión/potencia:

$$\rho = v \cdot i = \frac{v^2}{R} \Rightarrow 10 \cdot \log_{10}(\rho) = 20 \cdot \log_{10}(v) - 10 \cdot \log_{10}(R)$$
$$P \left[dBW \right] = V \left[dBV \right] - 10 \cdot \log_{10}(R)$$

O de otra forma:

$$P \left[dBm \right] - 30 = V \left[dBm \right] - 120 - 10 \cdot \log_{10}(R)$$

$$P \left[dBm \right] = V \left[dBm \right] - 10 \cdot \log_{10}(R) - 90$$

Práctica 1 – Parte 2. El deciBelio Unidades

Equivalencias:

$$P[dBm] = P[dBW] + 30$$

 $P[dBW] = P[dBm] - 30$

Algunos ejemplos:

- Teléfono GSM: 27 dBm (500 mW)
- WiFi portátil: 15 dBm (32 mW)
- Potencia recibida de un satélite GPS: 0,2 fW (-127 dBm)
- Radar AN/SPY-1D: 6 MW (68 dBW)

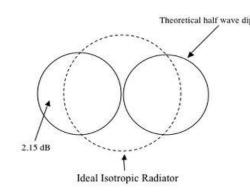
Valores prácticos:

- Un valor de dB > 0 significa **ganancia** o amplificación $(p_2>p_1)$
- Un valor de dB = 0 significa ganancia unidad $(p_2=p_1)$
- Un valor de dB < 0 significa pérdida o **atenuación** $(p_2 < p_1)$
- Un valor de dB = 3 significa doble de potencia $(p_2=2*p_1)$
- Un valor de dB = -3 significa mitad de potencia $(p_2=p_1/2)$

Práctica 1 — Parte 2. El deciBelio Unidades

- Otras consideraciones <u>importantes</u>:
 - dBm + dB = dBm
 - dBW + dB = dBW
 - $dB\mu V + dB = dB\mu V$
 - iNo se pueden sumar directamente dBW o dBm!

$$0dBm + 0dBm \neq 0dBm \Rightarrow 0dBm + 0dBm \approx 3dBm$$


- El dBm o el dBW pueden ser negativos y eso no es malo
- No es correcto decir "en este punto tengo 3dB" pero si "tengo 3dBm"

Práctica 1 — Parte 2. El deciBelio Fórmulas en Radiocomunicación

Primer caso:

la **ganancia de una antena** se suele medir como la relación entre el máximo del vector de poynting puesto en el aire y el de la antena isótropa, cuando a ambas se le entrega la misma potencia. En este caso se habla de **dBi**

$$G\left[dB_{i}\right] = 10 \cdot \log_{10}\left(\frac{g}{g_{iso}}\right) = 10 \cdot \log_{10}\left(\frac{g}{1}\right) = 10 \cdot \log_{10}g$$

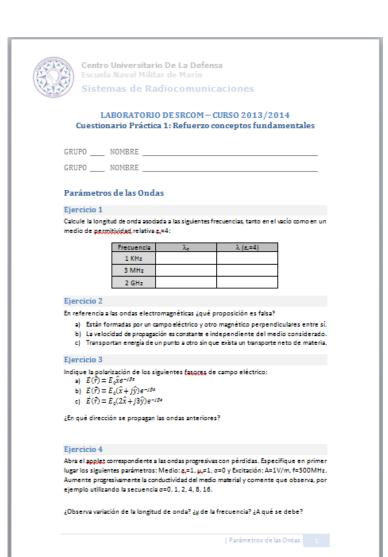
Segundo caso:

la **ecuación de Friss** puede utilizarse en unidades naturales pero lo más habitual es aplicarla en su forma logarítmica:

$$p_{R} = p_{T} \frac{g_{T}g_{R}}{\ell_{1}\ell_{2}\ell_{3}}$$

$$P_{R} \begin{bmatrix} dBW \end{bmatrix} = P_{T} \begin{bmatrix} dBW \end{bmatrix} + G_{R} \begin{bmatrix} dB \end{bmatrix} + G_{T} \begin{bmatrix} dB \end{bmatrix} - L_{1} \begin{bmatrix} dB \end{bmatrix} - L_{2} \begin{bmatrix} dB \end{bmatrix} - L_{3} \begin{bmatrix} dB \end{bmatrix}$$

$$C_{i} \begin{bmatrix} dB \end{bmatrix} = 10 \cdot \log_{10} g_{i}$$


$$P_{i} \begin{bmatrix} dB \end{bmatrix} = 10 \cdot \log_{10} p_{i}$$

$$L_{i} \begin{bmatrix} dB \end{bmatrix} = 10 \cdot \log_{10} \ell_{i}$$

Práctica 1 – Parte 2. Actividades Actividades propuestas y ejercicios puntuables

- Cálculos básicos
- Transformación de ecuaciones
- Ejercicios 5y 6

Parte 3 Legislación y Reglamento de Radiocomunicaciones

Práctica 1 – Parte 3. Legislación Fuentes

Internacionales

- ISO Organización Internacional de Normalización, <u>www.iso.org</u>
- IEC Comisión electrotécnica Internacional, www.iec.ch
- ITU Unión Internacional de Telecomunicaciones, <u>www.itu.int</u>
- OTAN Nato Standarization Agency, http://nsa.nato.int/nsa/
- Reglamento de Radiocomunicaciones de la IUT, http://www.itu.int/pub/R-REG-RR/es

Europeas

- CEN Comité Europeo de Normalización, <u>www.cenorm.be</u>
- CENELEC Comité Europeo de Normalización Electrotécnica <u>www.cenelec.org</u>
- ETSI Instituto Europeo de Normas de Telecomunicación, www.etsi.org

Nacionales

- Aenor (España), <u>www.aenor.es</u>
- Afnor (Francia), <u>www.afnor.fr</u>
- Din (Alemania), <u>www.din.de</u>
- BSI (Reino Unido), <u>www.bsi.org.uk</u>
- ANSI (Estados Unidos), <u>www.ansi.org</u>
- Cuadro Nacional de Atribución de Frecuencias (CNAF)
 http://www.minetur.gob.es/telecomunicaciones/Espectro/Paginas/CNAF.aspx

OTRAS

- EEE, Institute of Electrical and Electronics Engineers, <u>www.ieee.org</u>
- ASTM American Society for Testing and Materials, <u>www.astm.org</u>
- Colegio Oficial de Ingenieros de Telecomunicación, <u>www.coit.es</u>
- Comisión del Mercado de las Telecomunicaciones, <u>www.cmt.es</u>
- Asoc. de Empresas de Electrónica, Tecs. información y Telec., <u>www.aetic.es</u>
- Association of Computing Machinery, <u>www.acm.org</u>
- IEE/IET (Institution of Electrical Engineers ...) , <u>www.theiet.org</u>
- Ministerio de Industria, Turismo y Comercio, <u>www.mityc.es</u>
 <u>www.minetur.gob.es/telecomunicaciones/es-ES/Paginas/index.aspx</u>
- Unión Europea, http://europa.eu/pol/infso/index es.htm
- Entidad Nacional de Acreditación,
 www.enac.es/web/enac/sectorTelecomunicaciones
- Ministerio Defensa
 www.defensa.gob.es/politica/infraestructura/sistemas-cis/legislacion-normativa
- Un buen directorio, <u>www.cellular-news.com/regulator</u>

Práctica 1 – Parte 3. Actividades Actividades propuestas y ejercicios puntuables

- Localización de servicios
- Cuadro CNAF
- Ejercicio 7

	8,3 - 110 kHz			
Región 1	Región 2	Región 3		
Inferior a 8,3 kHz	(No atribuida)			
	5.53 5.54			
8,3 - 9	AYUDAS A LA METEOROLO	GÍA 5.54A 5.54B 5.54C		
9 – 11,3	AYUDAS A LA METEOROLOGÍA 5.54A RADIONAVEGACIÓN			
11,3 – 14	RADIONAVEGACIÓN			
14 - 19,95	FIJO MÓVIL MARÍTIMO 5.57 5.55 5.56			
19,95 - 20,05	FRECUENCIAS PATRÓN Y (20 kHz)	SEÑALES HORARIAS		
20,05 - 70	FIJO MÓVIL MARÍTIMO 5.57			
	5.56 5.58			

ATRIBUCIÓN NACIONAL	USOS	OBSERVACIONES				
8,3 - 110 kHz						
	_	1				
nferior a 8,3 kHz						
(No atribuída)		5.53 5.54				
3,3 - 9 AYUDAS A LA METEOROLOGÍA	R	5.54A 5.54B 5.54C UN-117				
9 – 11,3 AYUDAS A LA METEOROLOGÍA RADIONAVEGACIÓN	R	5.54A UN-0, UN -114, UN-117				
11,3 – 14 RADIONAVEGACIÓN	R	UN-114, UN-117				
14 - 19,95 FIJO MÓVIL MARÍTIMO	M M	5.56 5.57 UN-0, UN -114, UN-117				
19,95 - 20,05 FRECUENCIAS PATRÓN Y SEÑALES HORARIAS (20 kHz)	R	UN-114, UN-117				
20,05 - 70 FIJO MÓVIL MARÍTIMO	M M	5.56 5.57 UN-0, UN -114, UN-117				

(FIG.)	Centro Universitario De La Defensa
	Escuela Naval Militar de Marín
(6)	Centro Universitario De La Defensa Escuela Naval Militar de Marín Sistemas de Radiocomunicacione

LABORATORIO DE SRCOM – CURSO 2013/2014 Cuestionario Práctica 1: Refuerzo conceptos fundamentales

GRUPO	NOMBRE
PU	NOMBRE
CRITEO	NOMBRE

Parámetros de las Ondas

Ejercicio 1

Calcule la longitud de onda asociada a las siguientes frecuencias, tanto en el vacío como en un medio de pesmitividad, relativa a,=4:

Frecuencia	λο	λ (ε,=4)
1 KHz		
3 MHz		
2 GHz		

Ejercicio 2

En referencia a las ondas electromagnéticas ¿qué proposición es falsa?

- a) Están formadas por un campo eléctrico y otro magnético perpendiculares entre sí.
- b) La velocidad de propagación es constante e independiente del medio considerado.
- c) Transportan energia de un punto a otro sin que exista un transporte neto de materia.

Ejercicio 3

Indique la polarización de los siguientes fasores de campo eléctrico:

- a) $E(\hat{r}) = E_0 \hat{x} e^{-\beta x}$
- b) $\dot{E}(\vec{r}) = E_0(\hat{x} + j\hat{y})e^{-j\delta z}$
- c) $\vec{E}(\vec{r}) = E_0(2\hat{x} + i3\hat{y})e^{-i\theta z}$

¿En qué dirección se propagan las ondas anteriores?

Eiercicio

Abra el applet correspondiente a las ondas progresivas con pérdidas. Especifique en primer lugar los siguientes parámetros: Medio: q=1, µ=1, o=0 y Excitación: A=1V/m, f=300MHz. Aumente progresivamente la conductividad del medio material y comente que observa, por ejemplo utilizando la secuencia o=0, 1, 2, 4, 8, 16.

¿Observa variación de la longitud de onda? ¿y de la frecuencia? ¿A qué se debe?

| Parámetros de las Ondas