
...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 1 www.energymicro.com

Energy Micro University
UM002 - Introduction to C

This lesson is the second in the Energy Micro University series. It aims to give a
brief overview over the syntax and basic concepts of programming in C. The goal is
to be able use C when programming microcontrollers.

Concepts that will be introduced include:

• Data types
• Variables
• Pointers
• Functions
• Bitwise operations
• Conditionals
• Loops
• Preprocessors
• Register Operations

This lesson includes:

• This PDF document

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 2 www.energymicro.com

1 An Example

1.1 A short microcontroller program
The following code example turns on the USER LED on a STK and makes it stay turned on. It is a very
simple example, but shows some general syntax which will be explained in this lesson. Comments are
written between /* and */.

Example 1.1. A short microcontroller programming example

1 #include "efm32.h"
2 #include "em_chip.h"
3 #include "em_cmu.h"
4 #include "em_gpio.h"
5
6 int main(void)
7 {
8
9 /* The pin connected to the LED0 is pin E2 (Port E, pin 2) */
10 uint8_t pin_number = 2;
11
12 /* Initialize chip */
13 CHIP_Init();
14
15 /* Enable clock for GPIO module, we need this because
16 the button and the LED are connected to GPIO pins. */
17
18 CMU_ClockEnable(cmuClock_GPIO, true);
19
20 /* Configure PE2 (LED0) as a push pull, so that we can
21 set its value: 1 to turn on, 0 to turn off.
22 Turn on LED (pin E2) by setting the DOUTSET bit to 1*/
22
23 GPIO_PinModeSet(gpioPortE, 2, gpioModePushPull, 1)
24
25 while (1)
26 {
27 /* Stay in this loop at end of program. The LED will remain switched on. */
28 }
29 }

1.2 Detailed code comments
Line 1-4: Here are the included files for this example. They are files in the emlib which includes
configuration of the different peripherals, i.e. variable declarations, variable initializations, function
prototypes and function definitions.

Line 6: Here starts the main function where the program begins its execution. The main function is written
between two curly brackets (Line 7 and Line 35).

Line 10: This is a variable declaration of data type 8 bit unsigned integer, named pin_number. The
variable is initialized to 2.

Line 13: This is a function call to a function defined in one of the included files. Notice the semicolon
after a statement.

Line 18: Another function call. This function has two input values. The variable cmuClock_GPIO is
declared and initialized in one of the included files.

Line 23: Here starts the register operations to configure the LED (pin 2 on the microchip) to be able to
light. This is a built in function in the emlib library. This function sets the mode for the GIPO pin, i.e. sets

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 3 www.energymicro.com

the port to gpioPortE and the pin to 2. The third inputparameter sets the pin mode to push-pull output
and the last parameter is set to 1. This makes the LED light.

Line 25-28: A while loop that continues whenever the input is 1 (or true). In this case the input is set
to 1 and it does never change, which makes this an infinite loop. The program will never reach the end
of the main function.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 4 www.energymicro.com

2 Variables

2.1 Data Types

C has several data types that is used to define different variables. When defining a variable, the data
type will assign storage in the memory. The different data types are:

• int: defines integer numbers
• char: defines characters
• float: defines floating point numbers
• double: defines large floating point numbers
• bool: defines a logical data type that have two possible values, ie true and false
• enum: defines a list of named integer constants

It is possible to specify the size of an integer by writing intN_t, where N is the number of bits you
need. Further on, the data types can be modified into signed or unsigned data types, where signed can
take both positive and negative values and unsigned can take only non-negative values. When choosing
unsigned data types you can allow greater range of positive values. Table 2.1 (p. 4) shows some
of the common data types and their ranges.

Table 2.1. Data Types

Data Type Signing Size Range

int8_t Signed 8 bit -27 = -128 to 27 - 1 = 127

uint8_t Unsigned 8 bit 0 to 28 -1 = 255

int16_t Signed 16 bit -215 = -32 768 to 215 - 1 = 32 767

uint16_t Unsigned 16 bit 0 to 216 - 1 = 65 535

int32_t Signed 32 bit -231 = -2 147 483 648 to 215 -1 = 2 147 483 647

uint32_t Unsigned 32 bit 0 to 232 - 1 = 4 294 967 295

char Unsigned 8 bit 0 to 28 - 1 = 255

float Signed 32 bit Precision: 7 digits

double Signed 64 bit Precision:16 digits

The two data types float and double are not available in the hardware of most microcontrollers, and
if they are to be used in calculations it must be done in software. Thus, they are usually not used when
programming microcontrollers.

2.2 Declaration and initialization

The declaration of a variable consists of giving the variable a name and to assign it a data type. Initializing
the variable means to assign it a start value. Semicolon is used to end a statement. Comments are
written between /* and */

Example 2.1. Declaring and initializing a variable

 float length; /* declares the variable "length"
 as a floating number */
 length = 20.3; /* initialize "length" by giving
 it the value 20.3 */

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 5 www.energymicro.com

2.3 Blocks and scopes

A block is the content of code inside two curly brackets. Blocks can be nested, i.e. there can be blocks
inside blocks. A scope defines the accessibility of variables from different parts of the code. Within a
block variables that are declared in the same block or an enclosing block are available.

Example 2.2. An example of accessibility of variables in nested blocks.

 {
 int a = 1; /* a gets the value 1 */
 int b = 2; /* b gets the value 2 */
 {
 int c = a + b; /* a has the value 1, b has the value 2,
 c gets the value 3 */
 a = 5; /* a gets the value 5 */
 int d = a + b; /* a has the value 5, b has the value 2,
 d gets the value 7 */
 }
 }

Note that the variables c and d declared in the inner block of the code snippet in Example 2.2 (p. 5)
only are available within that block. When leaving this block, the two variables do not longer exist. The
d declared in the outer block is totally independent of the d declared in the inner block.

2.4 Global variables

A global variable is available in every scope of a program. When a variable is frequently used, declaring
a global variable will simplify the code. However, it can cause problems that the variable accidentally
can be changed anywhere in the code. Global variables can also make the code hard to read and
understand, and are generally not advised.

2.5 External variables

An external variable is a variable defined outside any block. When declaring a so called global variable,
it is restricted to the single file it is declared in, and not available in other files of a larger program. In C t
is possible to make the variable available in another file by declaring it again using the keyword extern.

Example 2.3. External variables

File 1:

 int a = 2; /* declares and initialize a variable a */

File 2:

 extern int a; /* explicit declaration of a */

 int main(){
 printf("%d\n",a); /* a can now be used as a
 global variable in File 2 */
 }

2.6 Static variables

A static variable is a variable that has been allocated statically. This means that the memory allocated
for this variable is allocated for the whole program run, unlike local variables where the memory is

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 6 www.energymicro.com

deallocated once we exit the scope. In C the keyword static has an additional meaning. When
declaring a variable as static, it is only available within the scope, and not across files. The two different
explanations of definitions of a static variable are independent of each other.

Example 2.4. An example of declaring a static variable.

 static int x = 0;

2.7 Constant variables

A constant variable is a read only variable, i.e. once it is declared it can not be changed. It can be used in
the same way as any other variable. The syntax for declaring a constant variable is to add the keyword
const before the data type.

Example 2.5. An example of declaring a const variable.

 const float pi = 3.14;

2.8 Enum

An enum defines a set of named integer identifiers. By declaring an enum set, the names will be
numerated from 0 and upwards by default, unless you specify the numbers you want. Enum are useful
because it can be easier holding track of words than numbers.

Example 2.6. An example of defining an enum

 enum color{
 red; /* red is given the value 0 by default */
 blue; /* blue gets the value 1 */
 green; /* green gets the value 2 */
 yellow = 5; /* yellow gets the specified value 5 */
 };

2.9 Arrays

An array is a collection of variables of the same type that might be one dimensional or multi dimensional.
An array can be of fixed or dynamic size. The size of a static array is declared from the beginning, and
can not be changed during the program. On the other hand, the size of a dynamic array is flexible and
can be changed.

2.9.1 One dimensional arrays and C strings

When declaring an array you have to specify the data type and size:

Example 2.7. Declaring and initializing an one dimensional array

 int32_t A [3]; /* declares an array of size 3 */
 A[0] = 5; /* initialize the three elements
 A[1] = 7; of the array. Could also have written
 A[2] = 1; int32_t A = {5,7,1}; */

 A[2]; /* gets access to the second value of A */

A C string is an array of data type char terminated by the null character '\0'. When initializing a C string
you put the text between two double quotes.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 7 www.energymicro.com

Example 2.8. C string

 char message [100] = "Hello World!";

 /* allocates memory to 100 data characters. Remember to have
 enough space for the null character! */

2.9.2 Multidimensional arrays

There are no restrictions of how many dimensions an array can have. Two dimensional array are
common when expressing tables or matrices. When declaring a multi dimensional array the number of
paired square brackets decide the dimension of the array.

Example 2.9. Declaring a 3 dimensional array

 int B [3][5][3];

2.10 Structs

A struct is a collection of variables into a single object. Unlike arrays, structs can have variables of
different data types.

Example 2.10. Defining a struct

 struct data{
 int x;
 int A[3];
 char y;
 };

 struct data a; /* declares a new variable
 of type data */
 a.x = 3;
 a.A[0]= 1; /* initialize the three member
 a.A[1]= 3; variables of a */
 a.A[2]= 4;
 a.y = 'B';

A struct is a variable type in the same way as an int or a char. Struct variables can be put into arrays,
or even be a member variable of a struct itself. This is called nested structs.

2.11 Typedef

Sometimes it can be useful to give a new name to an already existing type to for example clarify what
it is used for. An example could be a float variable time. One might want to specify the type to seconds
(sec). The usual way to declare the variable time would be:

 float time;

By using typedef you could declare the variable time as follows:

 typedef float sec;
 sec time; /*declares a variable time of type sec */

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 8 www.energymicro.com

Typedef is also used to simplify the declaration of a struct variable. One can omit the word struct
when declaring a variable by writing:

 typedef struct{
 int x;
 int A[3];
 char y;
 } data;
 data a; /* declares a new variable of type data */

2.12 Volatile variables

When adding the keyword volatile in front of a variable declaration, it tells the compiler that the
variable may change at any time, even though it does not look so in the code. A variable can be changed
in the hardware, and without being told, the compiler will not necessarily check this. Thus, a variable
should be declared volatile if it could change unexpectedly to tell the compiler to deal with this correctly.
This is common when it comes to programming microcontrollers, especially when dealing with interrupts
which will be explained in detail in lesson 4.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 9 www.energymicro.com

3 Pointers

3.1 Pointers

A pointer is a variable that contains a memory address. When declaring a variable as in Chapter 2 (p.
4) you allocate memory depending on the data type, see Table 2.1 (p. 4) . A pointer points to the place
in the memory where the variable is stored. The syntax of a pointer is shown in the example below:

Example 3.1. An example of a pointer

 int32_t a; /* declaration af a variable a.
 Allocates space in memory. */
 int32_t *a_ptr = &a; /* declaration and initialization of a pointer
 that points to a, using * in front
 of the pointer name. & in front of
 a returns the address of a. */

When you have declared a pointer you can set a value to the variable the pointer is pointing to. To
access this value you have to dereference the pointer by using * again.

Example 3.2. Dereference of a pointer

 a_ptr = 5; / a gets the value 5 */
 int32_t b = *a_ptr; /* declares a new variable which
 gets the value of a, in this
 case b gets the value 5 */

3.2 Constant pointers

A constant pointer is a constant memory address. The pointer can not be changed to point to other
places in the memory, but the variable it is pointing to can be changed.

There are different ways to declare constant pointers as shown in the following example:

Example 3.3. Different types of constant pointers

 int *ptr1; /* Regular pointer pointing to an int */
 const int *ptr2; /* Regular pointer pointing to a constant int */
 int *const ptr3; /* Constant pointer pointing to an int */
 const int *const ptr4; /* Constant pointer pointing to a constant int*/

3.3 Pointers and structs

If you have a pointer, a_ptr, to a struct variable, for example the struct defined in Section 2.10 (p. 7) ,
and you want to access and set the member variables, you use the following syntax:

Example 3.4. Pointer to a struct

 data *a_ptr; /* declares a pointer to a
 variable of type data */
 (*a_ptr).x = 3; /* a gets the value 3. This is
 the cumbersome way to do it. */
 a_ptr->x = 4; /* a gets the value 4. This is the
 common way to do it. */

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 10 www.energymicro.com

3.4 Pointers and arrays

You can define a pointer pointing to the first element of an array. By use of pointer arithmetic you can
go to anywhere in the array:

 int32_t array[5];
 int32_t *pointer;
 pointer = &array[0];

Now: *(pointer + i) = array[i]. Since the array is declared to contain the data type int32_t
the increment i jumps 8 byte automatically.

You can make multidimensional arrays by making an array of pointers pointing to new arrays. These
arrays may have different length.

Figure 3.1. Showing how to make a two dimensional array using pointers.

Array of pointers

Another way of making a multidimensional array is to allocate memory for all the elements and calculate
the index.

Example 3.5. Allocates memory for a m*n two dimensional array.

 int32_t *a = (int32_t) malloc(sizeof(int32_t)*m*n);

The indices are calculated as follows:

a[i][j] = a[m*j +i]

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 11 www.energymicro.com

4 Memory allocation

4.1 Memory organization: stack, heap, DATA and BSS

A stack is an area of memory used for temporary variables. A stack follows the "last in, first out" principle,
LIFO. This means that during run time, a variable is put on the stack,, for instance it is declared and
used in a function. When the variable has served its purpose, it is removed from the stack.

A heap on the other hand is used for dynamic memory allocation. Memory is allocated in an arbitrary
order, and is not removed before the memory is deallocated using the function free or the program
ends.

DATA is an area of memory used for global initialized variables. The BSS area contains uninitialized
global variables, i.e. global variables that only have been declared.

Figure 4.1. A typical way to organize the memory. The stack grows downwards and the heap
upwards in memory

Stack

Heap

DATA

BSS

Example 4.1. Showing an example with variable declarations. The placements in memory are told
in the comments.

 int a; /* BSS */
 int b = 3; /* DATA */
 int main(){
 int i; /* Stack */
 char *ptr = malloc(7); /* The char pointer is put on the stack
 and the allocated memory is put on
 the heap.*/
 }

4.2 malloc and free

To allocate memory while a program is running is known as dynamic memory allocation. The standard
library function malloc returns a pointer to given amount of memory that can be used. The function
free frees previously allocated space.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 12 www.energymicro.com

4.3 Dynamic arrays

By using malloc and free and declaring the array as a pointer you can make dynamical arrays. The
general syntax is:

 d_array = (type *) malloc (numberOfElements * sizeof(type));

where d_array is the array name. sizeof(type) returns the size in bytes. The array can be read
from and written to in the same way as static arrays, using the notation d_array[i]. When the program
is done you must remember to release the memory used, by using the function free. The syntax is:

 free (d_array);

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 13 www.energymicro.com

5 Functions

5.1 Arguments and return value

A function takes arguments as input and returns a value. The format of a function is as follows:

 type funcname(argument 1, argument2, ...){statements}

type specifies the data type of the return value, funcname is the name of the function. The arguments
also have a specified data type and a name. A function might not have any input arguments. The data
types can be all the mentioned in Chapter 2 (p. 4) . type can also be set to void, which means no
return value.

Example 5.1. Example of a function that returns the sum of two integers

 int sum(int a , int b){
 return a+b;
 }

5.2 Prototypes and definitions

A function is a group of statements that can be called and executed from some point in a program. The
prototype is a declaration of the function which specifies the functions name, return value and arguments.
This must be written before it is used in the code. The definition is the body of a function and specifies
what the function does with the arguments.

Example 5.2. Prototype and definition of a function

 float circumference(float radius); /* function prototype */
 float circumference(float radius){
 float ans = 2*3.14*radius; /* function definition */
 return ans; /* remember to specify return value! */
 }

5.3 The main function

The main function is where the program start its execution. The return value of main is an int. The
function prototype looks like follow:

 int main()

The main function can take arguments, argc, an argument count, and argv, an argument vector. The
two arguments give the number and value of the command line arguments of the program. In this case
the main function looks like follows:

 int main(int argc, char *argv[])

The definition of the main function consists of the execution of the program with function calls, etc. The
return value specifies how the program exited, and success is often represented with 0.

 int main(){
 / --program--/

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 14 www.energymicro.com

 return 0;
 }

When programming microcontrollers the main function has no input and in general no return value. This
is because the program stays in the main function in an infinite loop.

5.4 Static functions

Function prototypes are by default available in other files than the one where the prototype is. By adding
the keyword static it is not available in all other files. The syntax of the prototype is:

 void static do_something();

5.5 Inline functions

To inline a function means to request the compiler to write the function body where you are in the program
instead of making a function call. The purpose of this is to save the time it would take to call the function
from where it is defined. The compiler will not necessarily follow this request, and it might inline other
functions as it sees fit. When inlining a function the keyword inline is used.

Example 5.3. An example of an inline function

 inline int sum(int a, int b);

 int main(){
 c = sum(1,4);
 }

 inline int sum(int a, int b){
 return a + b;
 }

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 15 www.energymicro.com

6 Bitwise Operations
Sometimes a programmer needs to do operations at bit level. Bitwise operations can not be operated
on one single bit, but must be performed on at least one byte at a time. In the following sections the
bitwise operators will be presented.

6.1 & (AND)

& performs a logical AND operation to two binary representations of equal length. It returns 1 whenever
there are 1 in both bits and 0 in the other cases.

Figure 6.1. A table showing the bitwise operation &

0 1
0
1

0
1
0

0

Example 6.1. An example showing the bitwise operation &

 1001000
 &1000100
 =1000000

6.2 | (OR)

| performs a logical OR operation. It returns 1 if 1 is present and 0 if there are 0 in both bits.

Figure 6.2. A table showing the bitwise operation |

0 1
0
1

0
1
1

1

Example 6.2. An example showing the bitwise operation |

 1001000
 |1000100
 =1001100

6.3 ~ (NOT)

The bitwise ~ operator returns the complement of a binary representation.

Example 6.3. An example showing the bitwise operation ~

 ~1001000 = 0110111

6.4 ^ (XOR)

The bitwise ^ operator returns 1 if both bits are equal and 0 if not.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 16 www.energymicro.com

Figure 6.3. A table showing the bitwise operation ^

0 1
0
1

0
0
1

1

Example 6.4. An example showing the bitwise operation ^

 1001000
 ^1000100
 =0001100

6.5 << >> (bitshifting)

Bitshifting is moving bits either to the left or to the right. Because registers have a fixed number of bits this
means that adding a bit on the one end means removing a bit on the other end. The added bits are zeros.

 x << n
 x >> n

The bitshift operators << (left) and >> (right) take two arguments; x that is a bitstring and n that is an
integer that says how many bits to move to the right or to the left.

Example 6.5. An example showing a shift left by 3 bits

 1001001 << 3 = 1001000

Left shift by K is the same as multiplying by 2K and right shift by K is the same as dividing by 2K

6.6 Short Hand

When setting a variable in C the sign "=" is used. Consider the following code snippet:

 x = 1;
 x + 2;

When adding 2 to x, this creates a temporary variable, but x stays the same, and if we printed the value
of x the value would still be 1. If you want to change or update the value of x you must write:

 x = x + 2;

or in short hand:

 x += 2;

The same syntax is used for other operators, for example bitshifting:

 x = x<<2;

that in short hand equivalent to

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 17 www.energymicro.com

 x <<= 2;

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 18 www.energymicro.com

7 Conditionals

7.1 Comparison operators

Comparison operators are boolean operators which means that when operated on some operands they
return true or false. C did not support boolean expressions before C99 standard, and in that case
the comparison operators will return 1 (true) or 0 (false).

Example 7.1. Example of a simple if-statement

 if(a > 0){
 a = -a;
 }

Table 7.1. Comparison operators

Operator Explanation

== Test for equality

!= not equal

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Notice the double equal sign in contrast to the simple assignment sign, that sets a value to a variable.

7.2 Short-circuit conditionals: && and ||

The short-circuit conditionals are boolean operators. In C && means AND and || means OR. The following
expressions will return true:

 true && true == true
 true && false == false
 false && false == false
 true || true == true
 true || false == true
 false || false == false

Looking at the third line: when checking the first false in the && statement, it is not necessary to check
the other operand, and it will immediately return false.

7.3 if, else if, else

In conditional programming the result of a boolean computation will decide which computation or action
to be performed. The general setup for an if, else if, else- statement is as shown in the following
example:

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 19 www.energymicro.com

Example 7.2. Function calculating bus ticket price using if, else if and else

 int price(int age){
 if(a<17){
 return 13;
 }else if(age>66){
 return 15;
 }else{
 return 27;
 }
 }

The computation or action to be done is where he boolean computation returns true. The if-statements
can also be nested.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 20 www.energymicro.com

8 Switch
The switch statement allow branched operations based on an input value. The input value corresponds
to a case in the switch, where the code to be executed is defined. If the input value does not match any
of the cases, there also is a default statement. The general setup for an switch statement is shown
in the following example:

Example 8.1. Switch

 switch(input value){
 case 0;
 /*do something*/
 break;
 case 1;
 /*do something*/
 break;
 .
 .
 default;
 /*do something*/
 break;
 }

The number behind the word case corresponds to the input value, hence it can have different values,
also negative. It is important to remember the break statement, which is used to go to the end of the
switch in stead of continuing to execute code until a break or the end of the switch.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 21 www.energymicro.com

9 Loops

9.1 for
A for loop is used to execute some code a finite number of times. The syntax is

 for(initial_value; condition; increment){
 do something
 }

Example 9.1. A simple for loop adding the numbers from 1 to 5

 sum = 0;
 for(int i = 1; i<6; i++){
 sum +=i;
 }

9.2 while
The while loop executes as long as some condition is fulfilled. The syntax is

 while(condition){
 do something
 }

The while version of Example 9.1 (p. 21) is as follows:

Example 9.2. A simple while loop adding the numbers from 1 to 5

 sum = 0;
 int i = 1;
 while(i<6){
 sum +=i;
 i++;
 }

9.3 do/while
Sometimes it is convenient to execute your statements a least once, regardless if the condition is fullfilled.
The expression in a do-while statement is evaluated after the body of the loop is executed. The syntax is

 do{
 do something
 } while(condition)

The do/while version of Example 9.1 (p. 21) is as follows:

Example 9.3. A simple do/while loop adding the numbers from 1 to 5

 sum = 0;
 int i = 1;
 do{
 sum +=i;
 i++;
 } while(i<6)

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 22 www.energymicro.com

10 Source Code and Compilation
Source code is text written in a programming language, in this case C. The source code is translated to
assembly code by a compiler. Assembly code is one to one with the binary machine code,i.e. instructions
of zeros and ones that can be read by the CPU.

10.1 Header files
Header files are separate files that are included in the main file. This separation of files makes the source
code more structured. Header files may include declaration of variables and functions.

Figure 10.1. Showing how header files are included.

header1.h header2.h header3.h

program .c

10.2 Preprocessors
The preprocessor is a separate program that is executed at the beginning of the compiling translation.
A preprocessor directive starts with the sign #.

10.2.1 #include

The #include preprocessor is used to include files, such as header files. It tells the compiler to act
as if the included file is written where the #include statement appears. The included file is either
written between two double quotes("") or between angle brackets(<>) Depending on the bracket type
the compiler is told where to search for the included file first. Angeled brackets means that the system
includes are checked first and double quotes means that the user includes are checked first.

10.2.2 #define

The #define preprocessor can be used to define identifiers as functions that take arguments or as
objects which do not. To define objects is much like defining const global variables. The general syntax is:

 #define identifier(parameter list) (replacement)

Example 10.1. An example of using #define

 #define PI 3.14
 #define AREA(r) (PI*(r)^2) /* Area of a circle */

 int main(){
 float rad = 0.55; /* Angle given in radians */
 float deg = (rad/PI)*180; /* Converts the angle to degrees
 using the define for PI */
 float area = AREA(2); /* Calculate the area of a circle
 with radius 2 */
 }

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 23 www.energymicro.com

10.2.3 #ifndef

The #ifndef (if not defined) preprocessor checks if a given identifier has been defined before. A
#ifndef block must end with #endif

10.2.4 #include guard

The #include guard statement makes sure that a define are not defined more than once. The problem
comes up because header files can be included in other header files.

Figure 10.2. An example where #include guard should be used, or else defines would be
included twice, which would cause an error.

header1.h header2.h

program .c

The syntax is as follows:

File: header1.h:

 #ifndef HEADER_1
 #define HEADER_1
 #define PI 3.14
 .
 .
 .
 #endif

File: header2.h

 #include "header1.h"
 .
 .
 .

File: program.c

 #include "header1.h"
 #include "header2.h"
 .
 .
 .

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 24 www.energymicro.com

11 Reading from and writing to registers

11.1 The DAC struct

In lesson 1 you could read about peripherals of an MCU, and that they are controlled by reading from or
writing to control registers. In this chapter we look at how to do this in C. A register is a small amount of
memory, for example 32 bit. In this case the bits are numbered from 0 to 31. A bit or a bitfield is described
with bit position, name, reset value, access type and description. We look at an example regarding the
DAC peripheral. The struct of the peripheral in EFM32GG looks as follows:

Example 11.1. Peripheral struct

 typedef struct
 {
 __IO uint32_t CTRL;
 __I uint32_t STATUS;
 __IO uint32_t CH0CTRL;
 __IO uint32_t CH1CTRL;
 __IO uint32_t IEN;
 __I uint32_t IF;
 __O uint32_t IFS;
 __O uint32_t IFC;
 __IO uint32_t CH0DATA;
 __IO uint32_t CH1DATA;
 __O uint32_t COMBDATA;
 __IO uint32_t CAL;
 __IO uint32_t BIASPROG;
 uint32_t RESERVED0[8]
 __IO uint32_t OPACTRL;
 __IO uint32_t OPAOFFSET;
 __IO uint32_t OPA0MUX;
 __IO uint32_t OPA1MUX;
 __IO uint32_t OPA2MUX;
 } DAC_TypeDef;

The struct represent the different registers of the DAC. The data types are typedefs, specifying whether
a register is readable, writable or both.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 25 www.energymicro.com

11.2 The CTRL register

We look at the CTRL register.

Figure 11.1. Example register description

The CTRL register has 9 bits or bitfields that are in use. The rest of the bits are unused, and should not
be modified. The REFRSEL bitfield is two bits long, and can have the values 0,1,2 or 3, or binary: 00,
01, 10 or 11. The defines of the REFRSEL bitfield are as follows:

Example 11.2. Defines for REFRSEL bit field in DACn_CTRL.

 #define _DAC_CTRL_REFRSEL_SHIFT 20
 #define _DAC_CTRL_REFRSEL_MASK 0x300000UL
 #define DAC_CTRL_REFRSEL_DEFAULT (0x00000000UL << 20)
 #define DAC_CTRL_REFRSEL_8CYCLES (0x00000000UL << 20)
 #define DAC_CTRL_REFRSEL_16CYCLES (0x00000001UL << 20)
 #define DAC_CTRL_REFRSEL_32CYCLES (0x00000002UL << 20)
 #define DAC_CTRL_REFRSEL_64CYCLES (0x00000003UL << 20)
 #define _DAC_CTRL_REFRSEL_DEFAULT 0x00000000UL
 #define _DAC_CTRL_REFRSEL_8CYCLES 0x00000000UL
 #define _DAC_CTRL_REFRSEL_16CYCLES 0x00000001UL
 #define _DAC_CTRL_REFRSEL_32CYCLES 0x00000002UL
 #define _DAC_CTRL_REFRSEL_64CYCLES 0x00000003UL

Line 4-8 are the defines that can be set in the REFRSEL bitfield. They have the values 0,1,2 and 3
shifted 20 bits to the left. The third line is the default value, which is equal to the 8 cycles define. The
last five lines have the same values without the shifting. To use this, we also have to use the first line
which represent the shift value. This means that

 _DAC_CTRL_REFRSEL_8CYCLES << _DAC_CTRL_REFRSEL_SHIFT = DAC_CTRL_REFRSEL_8CYCLES

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 26 www.energymicro.com

When dealing with bitfields that are larger than 2 bits, it is unnecessary to write all these defines. The
second line is a mask value, 3 or binary 11, that is used to make sure that you do not clear other bits in
the register. This becomes clearer when looking at the examples in the next section.

11.3 Setting and clearing bits using & and |

We look at the one bit CH0PRESCRST. The defines are:

Example 11.3. Defines for CH0PRESCRST bit field in DACn_CTRL.

 #define DAC_CTRL_CH0PRESCRST (0x1UL << 7)
 #define _DAC_CTRL_CH0PRESCRST_SHIFT 7
 #define _DAC_CTRL_CH0PRESCRST_MASK 0x80UL
 #define DAC_CTRL_CH0PRESCRST_DEFAULT (0x00000000UL << 7)
 #define _DAC_CTRL_CH0PRESCRST_DEFAULT 0x00000000UL

When setting a bit it is important to make sure you do not clear other bits in the register. To ensure this,
the mask with the bit you want to set can be OR'ed with the original contents:

DAC0->CTRL = DAC0->CTRL | DAC_CTRL_CH0PRESCRST; or in short hand:

DAC0->CTRL |= DAC_CTRL_CH0PRESCRST;

Clearing a bit is done by ANDing the register with a value with all bits set except for the bit to be cleared:

DAC0->CTRL = DAC0->CTRL & ~DAC_CTRL_CH0PRESCRST; or

DAC0->CTRL &= ~DAC_CTRL_CH0PRESCRST;

When setting a new value to a bitfield containing multiple bits, a simple OR function will not do, since you
will risk that the original bitfield contents OR'ed with the mask will give a wrong result. This is illustrated
in the following figure:

Figure 11.2. An example showing how just ORing can give the wrong result when having a bitfield
containing multiple bits.

0 1 0 0 0 1
|

=

1 1

DAC_CTRL_REFERSEL_16CYCLES

Wrong result

Bit field to be set

Original

2 1 2 022 19.

0 0 0 0 0 00 1

0 1 0 0 0 11 1

Instead you should make sure to clear the entire bitfield (and only the bitfield) before you OR the new
value:

DAC0->CTRL = (DAC0->CTRL & ~_DAC_CTRL_REFRSEL_MASK) |
 DAC_CTRL_REFRSEL_16CYCLES;

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 27 www.energymicro.com

Figure 11.3. Showing how the correct result should be obtained.

|

Bit field to be set

Original

2 1 2 0

&(

|

=

~ _DAC_CTRL_REFERSEL_MASK

Correct result

DAC_CTRL_REFERSEL_16CYCLES

22 19.

DAC_CTRL_REFERSEL_16CYCLES0 0 0 0 0 00 1

0 1 0 0 0 10 0

0 0 0 0 0 00 1

0 1 0 0 0 10 1

0 1 0 0 0 11 1

1 1 1 1 1 10 0
(

=

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 28 www.energymicro.com

12 Summary
This lesson has given the basic concepts of the programming language C, including variables, functions,
bitwise operations and how to read from and write to registers. The most important in this lesson is
to list the syntax to be used when programming microcontrollers in C. There are plenty of reading
material regarding C programming available in books and on the internet for further studies. A book to
be recommended is "The C Programming Language" by Brian Kernighan and Dennis Ritchie.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 29 www.energymicro.com

13 Exercises
This example will show how to write and read registers. You will also learn how to observe and
manipulate register contents through the debugger in IAR Embedded Workbench. While the examples
are shown only for IAR, the tasks can also be completed in other supported IDEs. To do this exercise
you should have gone through the next module, um003_ides. Here you will learn to set up the toolchain.
In the main function in the 1_registers.c (inside Source Files) there is a marker space where you
can fill in your code.

13.1 Step 1: Enable timer clock

In this exercise we are going to use TIMER0. By default the 14 MHz RC oscillator is running but all
peripheral clocks are disabled, hence we must turn on the clock for TIMER0 before we use it. If we look
in the CMU chapter of the reference manual, we see that the clock to TIMER0 can be switched on by
setting the TIMER0 bit in the HFPERCLKEN0 register in the CMU peripheral. You can go to the Register
Description by clicking on CMU_HFPERCLKEN0 in the Register Map. Remember to use bitshifting to
set the right bit and or-ing to not clear other bits in the register!

13.2 Step 2: Start timer

Starting the Timer is done by writing a 1 to the START bit in the CMD register in TIMER0.

13.3 Using defines

In stead of writing the numbers directly it is possible to use already written defines as explained in
Chapter 11 (p. 24) for the control register for the DAC. The defines can be found in files with names
given by the registers we are looking at, in this case efm32gg_cmu and efm32gg_timer.

13.4 Step 3: Wait for threshold

Create a while-loop that waits until counter is 1000 before proceeding. Notice that TIMER has a Counter
Value Register, TIMERn_CNT.

13.5 Observation

Make sure the 1_register_GG project (or 1_register if you are using Tiny Gecko STK) is active by
pressing the corresponding tab at the bottom of the Workspace window. Then press the Download &
Debug button (Figure 13.1 (p. 30)). Then go to View->Register and find the STATUS register in
TIMER0. When you expand this, you should see the RUNNING bit set to 0. Place your cursor in front
of the line where you start the timer and press Run to Cursor. Then watch the RUNNING bit get set to
1 in the Register View when you Single Step over the expression. As you continue to Single Step you
will see the content of the CNT registers increasing. Try writing a different value to the CNT register by
entering it directly in the Register View.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 30 www.energymicro.com

Figure 13.1. Debug View in IAR

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 31 www.energymicro.com

14 Revision History

14.1 Revision 1.00

2011-06-22

Initial revision.

14.2 Revision 1.10

2012-07-27

Updated for Giant Gecko STK.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 32 www.energymicro.com

A Disclaimer and Trademarks

A.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to
use the Energy Micro products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes
only. Energy Micro reserves the right to make changes without further notice and limitation to product
information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Energy Micro shall have no liability for the consequences
of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products must not be used within
any Life Support System without the specific written consent of Energy Micro. A "Life Support System"
is any product or system intended to support or sustain life and/or health, which, if it fails, can be
reasonably expected to result in significant personal injury or death. Energy Micro products are generally
not intended for military applications. Energy Micro products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or
missiles capable of delivering such weapons.

A.2 Trademark Information

Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or
trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited.
Other terms and product names may be trademarks of others.

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 33 www.energymicro.com

B Contact Information

B.1 Energy Micro Corporate Headquarters

Postal Address Visitor Address Technical Support

Energy Micro AS
P.O. Box 4633 Nydalen
N-0405 Oslo
NORWAY

Energy Micro AS
Sandakerveien 118
N-0484 Oslo
NORWAY

support.energymicro.com
Phone: +47 40 10 03 01

www.energymicro.com
Phone: +47 23 00 98 00
Fax: + 47 23 00 98 01

B.2 Global Contacts

Visit www.energymicro.com for information on global distributors and representatives or contact
sales@energymicro.com for additional information.

Americas Europe, Middle East and Africa Asia and Pacific

www.energymicro.com/americas www.energymicro.com/emea www.energymicro.com/asia

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 34 www.energymicro.com

Table of Contents
1. An Example ... 2

1.1. A short microcontroller program ... 2
1.2. Detailed code comments .. 2

2. Variables ... 4
2.1. Data Types .. 4
2.2. Declaration and initialization .. 4
2.3. Blocks and scopes .. 5
2.4. Global variables .. 5
2.5. External variables ... 5
2.6. Static variables ... 5
2.7. Constant variables .. 6
2.8. Enum ... 6
2.9. Arrays ... 6
2.10. Structs .. 7
2.11. Typedef ... 7
2.12. Volatile variables ... 8

3. Pointers ... 9
3.1. Pointers .. 9
3.2. Constant pointers .. 9
3.3. Pointers and structs .. 9
3.4. Pointers and arrays ... 10

4. Memory allocation .. 11
4.1. Memory organization: stack, heap, DATA and BSS ... 11
4.2. malloc and free ... 11
4.3. Dynamic arrays ... 12

5. Functions ... 13
5.1. Arguments and return value .. 13
5.2. Prototypes and definitions ... 13
5.3. The main function ... 13
5.4. Static functions ... 14
5.5. Inline functions ... 14

6. Bitwise Operations ... 15
6.1. & (AND) .. 15
6.2. | (OR) ... 15
6.3. ~ (NOT) .. 15
6.4. ^ (XOR) ... 15
6.5. << >> (bitshifting) .. 16
6.6. Short Hand .. 16

7. Conditionals .. 18
7.1. Comparison operators .. 18
7.2. Short-circuit conditionals: && and || ... 18
7.3. if, else if, else .. 18

8. Switch ... 20
9. Loops .. 21

9.1. for .. 21
9.2. while ... 21
9.3. do/while ... 21

10. Source Code and Compilation .. 22
10.1. Header files .. 22
10.2. Preprocessors ... 22

11. Reading from and writing to registers .. 24
11.1. The DAC struct ... 24
11.2. The CTRL register ... 25
11.3. Setting and clearing bits using & and | .. 26

12. Summary .. 28
13. Exercises ... 29

13.1. Step 1: Enable timer clock .. 29
13.2. Step 2: Start timer ... 29
13.3. Using defines .. 29
13.4. Step 3: Wait for threshold ... 29
13.5. Observation .. 29

14. Revision History ... 31
14.1. Revision 1.00 .. 31
14.2. Revision 1.10 .. 31

A. Disclaimer and Trademarks ... 32
A.1. Disclaimer ... 32
A.2. Trademark Information ... 32

B. Contact Information ... 33
B.1. Energy Micro Corporate Headquarters .. 33
B.2. Global Contacts .. 33

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 35 www.energymicro.com

List of Figures
3.1. Showing how to make a two dimensional array using pointers. .. 10
4.1. A typical way to organize the memory. The stack grows downwards and the heap upwards in memory 11
6.1. A table showing the bitwise operation & .. 15
6.2. A table showing the bitwise operation | ... 15
6.3. A table showing the bitwise operation ^ ... 16
10.1. Showing how header files are included. ... 22
10.2. An example where #include guard should be used, or else defines would be included twice, which would cause
an error. .. 23
11.1. Example register description .. 25
11.2. An example showing how just ORing can give the wrong result when having a bitfield containing multiple bits. 26
11.3. Showing how the correct result should be obtained. .. 27
13.1. Debug View in IAR .. 30

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 36 www.energymicro.com

List of Tables
2.1. Data Types .. 4
7.1. Comparison operators .. 18

...the world's most energy friendly microcontrollers

2012-09-03 - um002_Rev1.10 37 www.energymicro.com

List of Examples
1.1. A short microcontroller programming example .. 2
2.1. Declaring and initializing a variable .. 4
2.2. An example of accessibility of variables in nested blocks. ... 5
2.3. External variables ... 5
2.4. An example of declaring a static variable. .. 6
2.5. An example of declaring a const variable. ... 6
2.6. An example of defining an enum ... 6
2.7. Declaring and initializing an one dimensional array .. 6
2.8. C string ... 7
2.9. Declaring a 3 dimensional array .. 7
2.10. Defining a struct ... 7
3.1. An example of a pointer .. 9
3.2. Dereference of a pointer .. 9
3.3. Different types of constant pointers .. 9
3.4. Pointer to a struct ... 9
3.5. Allocates memory for a m*n two dimensional array. ... 10
4.1. Showing an example with variable declarations. The placements in memory are told in the comments. 11
5.1. Example of a function that returns the sum of two integers ... 13
5.2. Prototype and definition of a function .. 13
5.3. An example of an inline function .. 14
6.1. An example showing the bitwise operation & .. 15
6.2. An example showing the bitwise operation | ... 15
6.3. An example showing the bitwise operation ~ .. 15
6.4. An example showing the bitwise operation ^ .. 16
6.5. An example showing a shift left by 3 bits ... 16
7.1. Example of a simple if-statement ... 18
7.2. Function calculating bus ticket price using if, else if and else ... 19
8.1. Switch ... 20
9.1. A simple for loop adding the numbers from 1 to 5 ... 21
9.2. A simple while loop adding the numbers from 1 to 5 .. 21
9.3. A simple do/while loop adding the numbers from 1 to 5 .. 21
10.1. An example of using #define ... 22
11.1. Peripheral struct .. 24
11.2. Defines for REFRSEL bit field in DACn_CTRL. ... 25
11.3. Defines for CH0PRESCRST bit field in DACn_CTRL. ... 26

	Energy Micro University
	Table of Contents
	1 An Example
	1.1 A short microcontroller program
	1.2 Detailed code comments

	2 Variables
	2.1 Data Types
	2.2 Declaration and initialization
	2.3 Blocks and scopes
	2.4 Global variables
	2.5 External variables
	2.6 Static variables
	2.7 Constant variables
	2.8 Enum
	2.9 Arrays
	2.9.1 One dimensional arrays and C strings
	2.9.2 Multidimensional arrays

	2.10 Structs
	2.11 Typedef
	2.12 Volatile variables

	3 Pointers
	3.1 Pointers
	3.2 Constant pointers
	3.3 Pointers and structs
	3.4 Pointers and arrays

	4 Memory allocation
	4.1 Memory organization: stack, heap, DATA and BSS
	4.2 malloc and free
	4.3 Dynamic arrays

	5 Functions
	5.1 Arguments and return value
	5.2 Prototypes and definitions
	5.3 The main function
	5.4 Static functions
	5.5 Inline functions

	6 Bitwise Operations
	6.1 & (AND)
	6.2 | (OR)
	6.3 ~ (NOT)
	6.4 ^ (XOR)
	6.5 << >> (bitshifting)
	6.6 Short Hand

	7 Conditionals
	7.1 Comparison operators
	7.2 Short-circuit conditionals: && and ||
	7.3 if, else if, else

	8 Switch
	9 Loops
	9.1 for
	9.2 while
	9.3 do/while

	10 Source Code and Compilation
	10.1 Header files
	10.2 Preprocessors
	10.2.1 #include
	10.2.2 #define
	10.2.3 #ifndef
	10.2.4 #include guard

	11 Reading from and writing to registers
	11.1 The DAC struct
	11.2 The CTRL register
	11.3 Setting and clearing bits using & and |

	12 Summary
	13 Exercises
	13.1 Step 1: Enable timer clock
	13.2 Step 2: Start timer
	13.3 Using defines
	13.4 Step 3: Wait for threshold
	13.5 Observation

	14 Revision History
	14.1 Revision 1.00
	14.2 Revision 1.10

	A Disclaimer and Trademarks
	A.1 Disclaimer
	A.2 Trademark Information

	B Contact Information
	B.1 Energy Micro Corporate Headquarters
	B.2 Global Contacts

