ECUACIONES DIFERENCIALES

Hoja 1

1 Analizar si las siguientes funciones son lipschitcianas (local o globalmente) y, si existe, calcular su constante de Lipschitz en los intervalos [0,b] y [a,b] con b>a>0:

1.
$$f(x) = |x|^r$$
, $r > 0$,

$$2. f(x) = \sin x,$$

3.
$$f(x) = \frac{x^3}{1+x^2}$$

$$4. \ f(x) = x \cos \frac{1}{x},$$

5.
$$f(x) = x \ln |x|$$
.

2 Calcular las constantes de Lipschitz (si existen) de las siguientes funciones en $[a_1, b_1] \times [a_2, b_2]$ con $b_i > a_i \ge 0$ para i = 1, 2:

1.
$$f(x_1, x_2) = (x_1 + x_2^2, -x_2)$$

2.
$$f(x_1, x_2) = \sqrt{|x_1 x_2|}$$

3.
$$f(x_1, x_2) = (x_1 \sqrt{|x_2|}, x_1)$$
.

3 Comprobar si las soluciones de las siguientes ecuaciones están definidas para todo $t \in \mathbb{R}$.

1.
$$x' = \frac{x^3}{1+x^2}$$
;

$$2. \ x' = x \cos \frac{1}{x};$$

3.
$$x' = \frac{e^t(x^3 + x + t)}{1 + x^2}$$
;

4.
$$x' = t^3 \operatorname{sen}(x + t^2)$$
.

4 Transformar las siguientes ecuaciones diferenciales en sistemas de primer orden y determinar el dominio donde la correspondiente función cumple una condición de Lipschitz:

1.
$$\frac{d^3x}{dt^3} = 1 - x^2$$
,

$$2. \ \frac{d^2x}{dt^2} = \frac{1}{\sqrt{|x|}},$$

$$3. \ \frac{d^3x}{dt^3} = \sqrt{1 + \left(\frac{d^2x}{dt^2}\right)^2}.$$

5 Demostrar que para cada $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}$ la ecuación $x' = \frac{x^3}{1 + x^2}$ tiene una única solución que satisface $x(t_0) = x_0$.

- **6** Consideremos la función $f(t,x)=\frac{4t^3x}{t^4+x^2}$ para $(t,x)\neq (0,0),\ f(0,0)=0$:
 - 1. Demostrar la continuidad de f.
 - 2. Estudiar la Lipschitcianidad de f
 - 3. Comprobar que $x(t) = t^2$ y $x(t) = -t^2$ son soluciones de $x' = \frac{4t^3x}{t^4 + x^2}$.
 - 4. Hallar un factor integrante para la ecuación $x' = \frac{4t^3x}{t^4 + x^2}$. Determinar todas las soluciones de esta ecuación que pasa por el punto $(t_0, x_0) = (0, 0)$.
 - 5. ¿Cuantas soluciones pasan por el punto $(t_0, x_0) = (0, 1)$?