
POLINOMIO DE CHEBYCHEV DE 1ª ESPECIE Y DE ORDEN n:

$$C_{n}\left(\frac{f}{f_{0}}\right) = \begin{cases} \cos\left[n \cdot \arccos\left(\frac{f}{f_{0}}\right)\right] & ; \quad 0 \le \left|\frac{f}{f_{0}}\right| \le 1 \\ \cosh\left[n \cdot \arccos\left(\frac{f}{f_{0}}\right)\right] & ; \quad \left|\frac{f}{f_{0}}\right| > 1 \end{cases}$$

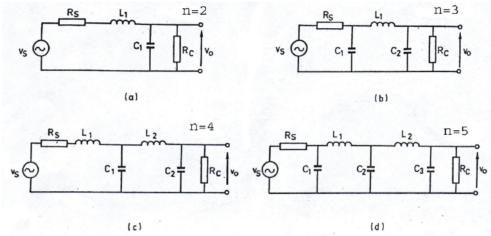
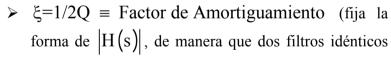
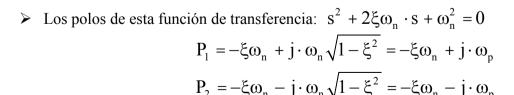


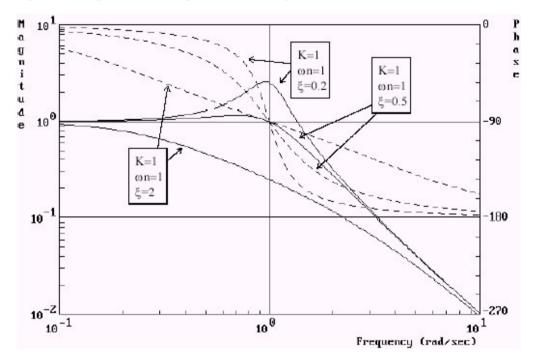
Figura 8 Filtros de Butterworth pasivos de paso bajo, orden 2 a 5; observar que el orden coincide con el número de elementos independientes que almacenan energía. Los valores normalizados de los componentes están en la tabla 3.6.

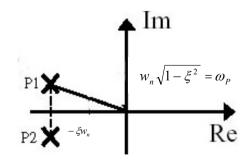
Tabla 8 Valores normalizados para los componentes de los filtros de Butterworth de la figura 8 , para el caso en que están terminados ($R_S=1~\Omega,~R_C=1~\Omega$) y para el caso en que no lo están ($R_S=1~\Omega,~R_C=\infty$).


Orden	$R_{\mathcal{C}}(\Omega)$	L ₁ (H)	C ₁ (F)	L₂(H)	C ₂ (F)	C ₃ (F)
2	1	$\sqrt{2}$. √2	- · · <u>-</u>	_	- :
	00	$\sqrt{2/2}$	$\sqrt{2}$	_	-	- 7
3	1	2 '	1	-	1	
-	00	4/3	1/2	_	3/2	_
4	1	0,7654	1,8478	1,8478	0,7654	_
	00	0,3827	1,0824	1,5772	1,5307	_
5	1	1,6180	0,6180	1,6180	2	0,6180
	00	0,8944	0,3090	1,6944	1,3820	1,5451

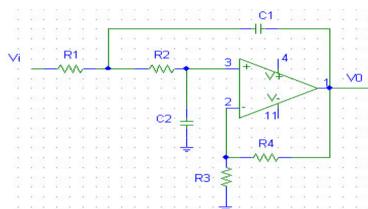
FUNCIÓN DE TRANSFERENCIA DE UN FILTRO LP DE 2º ORDEN


$$H(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2} = \frac{K \cdot \omega_n^2}{(s - P_1) \cdot (s - P_2)}$$


- \rightarrow H(0) = K = Ganancia en DC (controla la ganancia del filtro su altura)
- ho_n = Frecuencia Natural (está estrechamente relacionada con la frec. de corte del filtro $\omega_c = \omega_n f(\xi)$. Fija, por tanto, el ancho de banda del filtro: a mayor ω_n mayor es la anchura del filtro). Para un LP de 2º orden:


$$BW = \omega_{C} = \omega_{n} \cdot \sqrt{(1 - 2\xi^{2}) + \sqrt{4\xi^{4} - 4\xi^{2} + 2}}$$

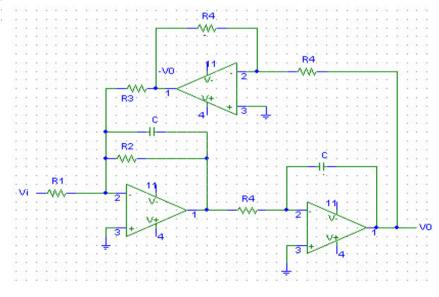
salvo escala tendrán el mismo ξ) \Rightarrow Como se observa en la fig. para $\xi < 1/\sqrt{2} = 0.7071$ se produce pico de resonancia. Para $\xi = 0.7071$ \Rightarrow $\omega_C = \omega_n$



FILTROS ACTIVOS LP DE 2º ORDEN: ESTRUCTURAS INDICADAS PARA SU IMPLEMENTACIÓN

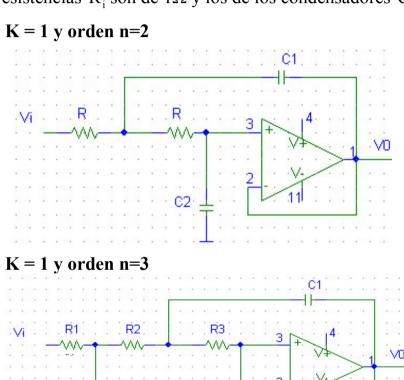
$$H(s) = \frac{K\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

1.- Estructura VCVS (fuente de tensión controlada por tensión):



$$K = 1 + \frac{R_4}{R_3}$$
; $\omega_n^2 = \frac{1}{R_1 \cdot C_1 \cdot R_2 \cdot C_2}$

$$2\xi \cdot \omega_{n} = -\frac{R_{4}/R_{3}}{R_{2} \cdot C_{2}} + \frac{1}{R_{1} \cdot C_{1}} + \frac{1}{R_{2} \cdot C_{1}}$$

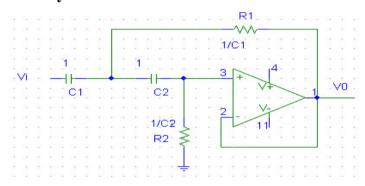

2.- Estructura Bicuadrática:

$$K = \frac{R_3}{R_1}$$
; $\omega_n^2 = \frac{1}{R_3 \cdot R_4 \cdot C^2}$; $2\xi \cdot \omega_n = \frac{1}{R_2 \cdot C}$

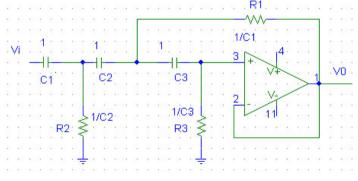
DISEÑO DE FILTROS ACTIVOS PASO DE BAJO

Filtros Activos LP basados en la estructura VCVS Normalizados a K=1 y $\overline{\omega_c}$ = 1rad/s. Los valores de las resistencias $\overline{R_i}$ son de 1Ω y los de los condensadores $\overline{C_i}$ están tabulados en la siguiente tabla (en Faradios).

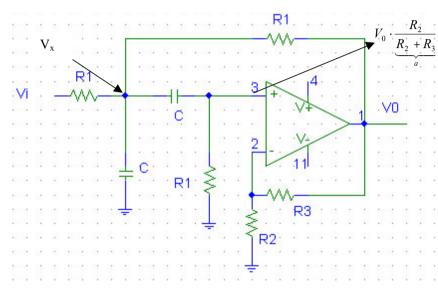
Orden	2	3	4	5	6
Butterworth					
C ₁	1,414 + 0	3,546 + 0	1.082 + 0	1,753 +0	1,035 + 0
91	.,		2,613 + 0	3,235 +0	1,414 + 0
					3,863 + 0
C ₂	7.071 -1	1,392 + 0	9.241 - 1	1,354 + 0	9,660 - 1
02	.,	.,	3,825 - 1	3,089 -1	7,071 - 1
					2,588 - 1
C ₃		2.024 - 1		4,214 - 1	
Chebychev 2 dB					
C ₁	2,672 +0	2,782 + 0	4.021 + 0	1,240 +1	5,750 + 0
4	2,012 +0	2,702 +0	9.707 + 0	1,499 + 1	7,853 + 0
			3,707 + 0	1,100	2,146 + 1
C ₂	5,246 -1	3,113 + 0	1,163 + 0	4,953 + 0	1,769 + 0
C2	5,240 -1	3,113 + 0	1,150 - 1	7,169 - 2	2,426 - 1
			1,100	1,100	4,902 - 2
C ₃		3,892 - 2		1,963 - 1	
Chebychev 1 dB					
C ₁	2.218 + 0	1,618 + 1	3,125 + 0	8.884 + 0	4,410 + 0
01	2,210 10	1,010	7,546 + 0	1,155 + 1	6,024 + 0
			.,		1,646 + 1
C2	6,061 - 1	2,567 + 0	1,269 + 0	3,935 + 0	1,904 + 0
02	0,001	2,007	1.489 - 1	9.355 - 2	3,117 - 1
					6,425 - 2
C ₃		6,428 - 2		2,540 - 1	
Chebychev 0,25 dB					
C ₁	1,778 + 0	8,551 + 0	2.221 + 0	5,543 + 0	3,044 + 0
01	1,770 + 0	0,00	5,363 + 0	8,061 + 0	4,159 + 0
					1,136 +1
C,	6,789 - 1	2.018 + 0	1,285 + 0	2.898 + 0	1,875 + 0
12	0,703 - 1	2,010 10	2,084 - 1	1,341 - 1	4,296 - 1
			2,00.		9,323 - 2
C ₃		1,109 - 1		3,425 - 1	
Chebychev 0,1 dB					
C ₁	1,638 + 0	6.653 + 0	1,901 + 0	4,446 + 0	2,553 + 0
U 1	1,000 + 9	5,000 + 0	4,592 + 0	6,810 + 0	3,487 + 0
			-,002 + 0	3,0.0	9,531 + 0


DISEÑO DE FILTROS ACTIVOS PASO DE ALTA

Filtros Activos HP basados en la estructura VCVS Normalizados a K=1 y $\overline{\omega_c}$ = 1rad/s. Los condensadores son de 1F,


 $\overline{C_i}$ = 1F, y las resistencias se calculan según $\overline{R_i}$ = 1/ C_i^{tab} , donde C_i^{tab} son los valores que aparecen tabulados en la tabla de la página

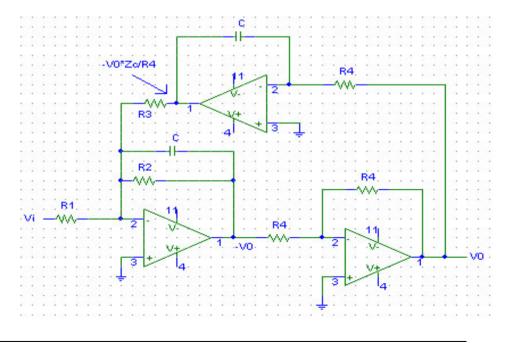
anterior (página 4).


K = 1 y orden n=2

K = 1 y orden n=3

DISEÑO DE FILTROS ACTIVOS BP: a partir de estructura VCVS (para Q < 4)

de estructura Bicuadrática (Q↑↑ hasta 100)


$$H(s) = \frac{V_0}{V_i} = \frac{K\omega_0 s}{s^2 + Bs + \omega_0^2},$$

con:
$$K = \frac{\sqrt{R_3 R_4}}{R_1}$$
; $B = \frac{1}{R_2 C}$ y $\omega_0^2 = \frac{1}{R_3 R_4 C^2}$

$$H(s) = \frac{V_0}{V_i} = \frac{K\omega_0 s}{s^2 + Bs + \omega_0^2},$$

$$con: K = \frac{1 + \frac{R_3}{R_2}}{\sqrt{2}}; B = \left[2\sqrt{2} - K\right] \cdot \omega_0 \quad y \quad \omega_0 = \frac{\sqrt{2}}{R_1 C}$$

DISEÑO DE FILTROS ACTIVOS BP: a partir

TABLA DE TRANSFORMADA DE LAPLACE (I):

	f(t)	F(s)
1	Impulso unitario $\delta(t)$	1
2	Escalón unitario 1(t)	$\frac{1}{s}$
3	1	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	$\frac{1}{s^n}$
5	$t^n \qquad (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
6	e^{-at}	$\frac{1}{s+a}$
7	te^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
9	$t^n e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{n!}{(s+a)^{n+1}}$
10	sen ωt	$\frac{\omega}{s^2 + \omega^2}$
11	cos ωt	$\frac{s}{s^2 + \omega^2}$
12	senh ωt	$\frac{\omega}{s^2 - \omega^2}$
13	cosh ωt	$\frac{s}{s^2-\omega^2}$
14	$\frac{1}{a}\left(1-e^{-at}\right)$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}\left(be^{-bt}-ae^{-at}\right)$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$

- DIESIA Página 7 de 8

TABLA DE TRANSFORMADA DE LAPLACE (II):

_	T	
18	$\frac{1}{a^2}\left(1-e^{-at}-ate^{-at}\right)$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
20	e ^{-at} sen ωt	$\frac{\omega}{(s+a)^2+\omega^2}$
21	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\operatorname{sen}\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\operatorname{sen}\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right)$ $\phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
24	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \operatorname{sen} \left(\omega_n \sqrt{1 - \zeta^2} t + \phi \right)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$
25	$1 - \cos \omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
26	ωt - sen ωt	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	sen $\omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
28	$\frac{1}{2\omega} t \operatorname{sen} \omega t$	$\frac{s}{(s^2+\omega^2)^2}$
29	$t\cos\omega t$	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \qquad (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
31	$\frac{1}{2\omega}$ (sen $\omega t + \omega t \cos \omega t$)	$\frac{s^2}{(s^2+\omega^2)^2}$

- DIESIA Página 8 de 8