

Colligative properties

PHYSICAL CHEMISTRY, 2nd course Degree in Pharmacy

2018-2019

COLLIGATIVE PROPERTIES

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

- The word comes from the Latin "colligatus" that means together.
- These properties:
 - ➤ depend ONLY on the number of solute particles.
 - ➤ do NOT depend on the nature of the solute.

3

COLLIGATIVE PROPERTIES

- The solutions have certain characteristics:
 - > the solute is NOT VOLATILE.
 - > the solid solute does NOT dissolve into the solid solvent.

- These properties are studied in:
 - A. NON- ELECTROLYTE Solutions.
 - B. **ELECTROLYTE** Solutions.

5

COLLIGATIVE PROPERTIES

- VAPOUR PRESSURE LOWERING
- FREEZING POINT DEPRESSION (CRYOSCOPY)
- BOILING POINT ELEVATION (EBULLIOSCOPY)
- OSMOTIC PRESSURE

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

VAPOUR PRESSURE LOWERING

• The presence of the solute reduce the solvent tendency to go to the vapour phase.

VAPOUR PRESSURE LOWERING

9

VAPOUR PRESSURE LOWERING

VAPOUR PRESSURE LOWERING

11

COLLIGATIVE PROPERTIES

Non-volatile solute

The vapour curve does not change

The solute does not dissolve in the solid solvent

The solid curve does not change

17

COLLIGATIVE PROPERTIES

• The change in μ affects the freezing point and the boiling point

$$\left(\frac{\partial\,\mu}{\partial\,T}\right)_{\!_{I\!\!P}} = \!\!\left(\frac{\partial\,\overline{G}}{\partial\,T}\right)_{\!_{I\!\!P}} = -\,\overline{S}$$

$$\overline{S}_{vapour}>>>\overline{S}_{liquid}>\overline{S}_{solid}$$

COLLIGATIVE PROPERTIES

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

SOLUTION
Non-Volatile Solute
Volatile Solvent (A)

SOLID Phas
Pure solvent (A)

This property appears when there is phase equilibrium

21

FREEZING POINT DEPRESSION

• IDEAL SOLUTION

$$\begin{split} \mu_A^{*(s)} = & \mu_A^{sol} \\ \mu_A^{*(s)} = & \mu_A^{o(l)} + R \ T \ log \ x_A^l \\ - & R \ T \ log \ x_A^l = \mu_A^{o(l)} - \mu_A^{*(s)} \\ - & R \ T \ log \ x_A^l = \mu_A^{*(l)} - \mu_A^{*(s)} \end{split}$$

• IDEAL SOLUTION

$$-R\ T\ log\ x_{\rm A}^{\rm l}=\mu_{\rm A}^{*(l)}-\mu_{\rm A}^{*(s)}$$

$$-R T \log x_A^1 = \overline{\Delta G}_{m,A}$$

$$\log x_A^1 = \frac{-\overline{\Delta G}_{m,A}}{RT}$$

23

FREEZING POINT DEPRESSION

• IDEAL SOLUTION

$$\left(\frac{\partial log \ x_A^l}{\partial \ T}\right)_P = \left(\frac{\partial \frac{-\overline{\Delta G}_{m,A}}{R \ T}}{\partial \ T}\right)_P$$

$$\left(\frac{\partial log \ x_A^l}{\partial \ T}\right)_{\!\!P} = -\frac{\left(\frac{\partial \ \overline{\Delta G}_{m,A}}{\partial \ T}\right)_{\!\!P} R \ T - \left(\frac{\partial \ R \ T}{\partial \ T}\right)_{\!\!P} \overline{\Delta G}_{m,A}}{R^2 \ T^2}$$

•IDEAL SOLUTION

$$\begin{split} \left(\frac{\partial \, log \, x_A^l}{\partial \, T}\right)_{\!P} &= -\frac{\left(\frac{\partial \, \overline{\Delta G}_{m,A}}{\partial \, T}\right)_{\!P} R \, T - \left(\frac{\partial \, R \, T}{\partial \, T}\right)_{\!P} \overline{\Delta G}_{m,A}}{R^2 \, T^2} \\ &\left(\frac{\partial \, log \, x_A^l}{\partial \, T}\right)_{\!P} = -\frac{-\, \overline{\Delta S}_{m,A} \, T - \overline{\Delta G}_{m,A}}{R \, T^2} \end{split}$$

$$\left(\frac{\partial log \ x_A^l}{\partial \ T}\right)_{\!P} = \frac{\overline{\Delta H}_{m,A}}{R \ T^2}$$

FREEZING POINT DEPRESSION

•IDEAL SOLUTION

$$\int_{\log 1}^{\log x_A^l} dlog \ x_A^l = \int_{T_{m,A}^*}^{T_m} \frac{\overline{\Delta H}_{m,A}}{R \ T^2} \ dT$$

$$\log x_A^1 = \frac{-\overline{\Delta H}_{m,A}}{R} \left(\frac{1}{T_m} - \frac{1}{T_{m,A}^*} \right)$$

$$log x_A^1 = \frac{-\overline{\Delta H}_{m,A}}{R} \left(\frac{T_{m,A}^* - T_m}{T_{m,A}^* T_m} \right)$$

26

•IDEAL SOLUTION

$$\begin{split} log \ x_A^l = & \frac{-\overline{\Delta H}_{m,A}}{R} \left(\frac{T_{m,A}^* - T_m}{T_{m,A}^* T_m} \right) \\ \Delta T_m = & T_{m,A}^* - T_m \\ log \ x_A^l = & \frac{-\overline{\Delta H}_{m,A}}{R} \left(\frac{\Delta T_m}{T_{m,A}^* T_m} \right) \\ \\ log \ x_A^l \cong & \frac{-\overline{\Delta H}_{fus,A}}{R} \left(\frac{\Delta T_{fus}}{T_{fus,A}^{*2}} \right) \end{split}$$

27

FREEZING POINT DEPRESSION

•IDEAL DILUTE SOLUTIONS

$$\log (1-x) = -x + \frac{1}{2!} x^{2} - \frac{2}{3!} x^{3} + \frac{6}{4!} x^{4} - \dots$$

$$\log (1-x_{B}^{1}) \cong -x_{B}^{1}$$

$$x_{B}^{1} \cong \frac{\overline{\Delta H}_{m,A}}{R} \left(\frac{\Delta T_{m}}{T_{m,A}^{*2}}\right)$$

$$x_{B}^{1} \cong m_{B} M_{A} 10^{-3}$$

• IDEAL DILUTE SOLUTION

$$\Delta T_{m} = \frac{M_{A} \ 10^{-3} \ R \ T_{m,A}^{*2}}{\overline{\Delta H}_{m,A}} \ m_{B}$$

$$\Delta T_{m} = K_{c} \ m_{B}$$

$$K_{c} = \frac{M_{A} \ R \ T_{m,A}^{*2}}{\overline{\Delta H}_{m \ A} \ 10^{3}}$$

29

FREEZING POINT DEPRESSION

• REAL SOLUTION

$$\mu_A^{*(s)} = \mu_A^{sol}$$

$$\mu_A^{*(s)} = \mu_A^{o(l)} + R T \log a_A$$

$$-R T \log a_A = \mu_A^{o(l)} - \mu_A^{*(s)}$$

$$-R T \log a_A = \mu_A^{*(l)} - \mu_A^{*(s)}$$

• REAL SOLUTION

$$-R T \log a_{A} = \mu_{A}^{*(I)} - \mu_{A}^{*(s)}$$
$$-R T \log a_{A} = \overline{\Delta G}_{m,A}$$

$$\left(\frac{\partial log a_{A}}{\partial T}\right)_{P} = \frac{\overline{\Delta H}_{m,A}}{R T^{2}}$$

31

FREEZING POINT DEPRESSION

• REAL SOLUTION

$$\int_{log\;1}^{log\;a_{_A}}dlog\;a_{_A}=\int_{T_{m_{_A}}^*}^{T_m}\frac{\overline{\Delta H}_{m,A}}{R\;T^2}\;dT$$

$$log a_{A} = \frac{-\overline{\Delta H}_{m,A}}{R} \left(\frac{\Delta T_{m}}{T_{m,A}^{*} T_{m}} \right)$$

$$\label{eq:gamma_A} log \; a_A^{} = log \; \gamma_A \; x_A^{l} \; \cong \frac{- \; \overline{\Delta H}_{m,A}}{R} \Biggl(\frac{\Delta T_m^{}}{T_{m,A}^{*\,2}} \Biggr)$$

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

BOILING POINT ELEVATION

This property appears when

vapour Phase
Pure solvent (A)

solution
Non-Volatile Solute
Volatile Solvent (A)

pure A vaporizes when the solution is heated

• IDEAL SOLUTION

$$\begin{split} \mu_A^{*(v)} = & \mu_A^{sol} \\ \mu_A^{*(v)} = & \mu_A^{o(l)} + R \ T \ log \ x_A^l \\ \mu_A^{*(v)} - & \mu_A^{o(l)} = R \ T \ log \ x_A^l \\ \mu_A^{*(v)} - & \mu_A^{*(l)} = R \ T \ log \ x_A^l \end{split}$$

36

BOILING POINT ELEVATION

• IDEAL SOLUTION

$$\mu_A^{*(v)} - \mu_A^{*(l)} = R \ T \ log \ x_A^l$$

$$\overline{\Delta G}_{vap,A} = R T \log x_A^1$$

$$\left(\frac{\partial log \ x_A^l}{\partial \ T}\right)_{\!P} = -\frac{\overline{\Delta H}_{vap,A}}{R \ T^2}$$

•IDEAL SOLUTION

$$\int_{log\;1}^{log\;x_A^l}dlog\;x_A^l=\int_{T_{b,A}^*}^{T_b}-\frac{\overline{\Delta H}_{vap,A}}{R\;T^2}\;dT$$

$$log x_A^1 = \frac{-\overline{\Delta H}_{vap,A}}{R} \left(\frac{\Delta T_b}{T_{b,A}^* T_b} \right) \qquad \Delta T_b = T_b - T_{b,A}^*$$

$$\begin{array}{|l|} log \ x_A^l \cong \frac{-\overline{\Delta H}_{vap,A}}{R} \left(\frac{\Delta T_b}{T_{b,A}^{*\,2}} \right) \end{array}$$

38

BOILING POINT ELEVATION

• IDEAL DILUTE SOLUTION

$$\log (1-x) = -x + \frac{1}{2!}x^2 - \frac{2}{3!}x^3 + \frac{6}{4!}x^4 - \dots$$

$$\log (1-x_B^1) \cong -x_B^1$$

$$x_B^1 \cong \frac{\overline{\Delta H}_{vap,A}}{R} \left(\frac{\Delta T_b}{T_{b,A}^{*2}}\right)$$

$$x_B^1 \cong m_B M_A 10^{-3}$$

• IDEAL DILUTE SOLUTION

$$\Delta T_{b} = \frac{M_{A}}{\overline{\Delta H}_{vap,A}} \, m_{B}^{*2}$$

$$\Delta T_b = K_b m_B$$

$$K_{b} = \frac{M_{A} R T_{b,A}^{*^{2}}}{\Delta \overline{H}_{vap,A} 10^{3}}$$

40

BOILING POINT ELEVATION

• REAL SOLUTION

$$\mu_A^{*(v)} = \mu_A^{sol}$$

$$\mu_A^{*(v)} = \mu_A^{o(l)} + R T \log a_A$$

$$\mu_A^{*(v)} - \mu_A^{o(l)} = R T \log a_A$$

 $\mu_{A}^{*(v)} - \mu_{A}^{*(l)} = R T \log a_{A}$

• REAL SOLUTION

$$\mu_{\mathrm{A}}^{*(v)} - \mu_{\mathrm{A}}^{*(l)} = R \ T \ log \ a_{\mathrm{A}}$$

$$\overline{\Delta G}_{\text{vap,A}} = R T \log a_A$$

$$\left(\frac{\partial \log a_{A}}{\partial T}\right)_{P} = -\frac{\overline{\Delta H}_{vap,A}}{R T^{2}}$$

42

BOILING POINT ELEVATION

• REAL SOLUTION

$$\int_{log\,1}^{log\,a_A} dlog\,a_A = \int_{T_{b,A}^*}^{T_b} - \frac{\overline{\Delta H}_{vap,A}}{R\,T^2}\,dT$$

$$\log a_{A} = \frac{-\overline{\Delta H}_{vap,A}}{R} \left(\frac{\Delta T_{b}}{T_{b,A}^{*} T_{b}} \right)$$

$$\left| log \ a_A = log \ \gamma_A \ x_A^1 \cong \frac{-\overline{\Delta H}_{vap,A}}{R} \left(\frac{\Delta T_b}{T_{b,A}^{*2}} \right) \right|$$

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

OSMOTIC PRESSURE

This property appears when theres is phase equilibrium

solution and the pure solvent in liquid phase

OSMOTIC PRESSURE

49

OSMOTIC PRESSURE

•IDEAL SOLUTION

$$\begin{split} \mu_{A}^{*(l)}(T, P_{\alpha}) &= \mu_{A}^{(l)}(T, P_{\beta}) \\ \mu_{A}^{*(l)}(T, P_{\alpha}) &= \mu_{A}^{*(l)}(T, P_{\beta}) + R \ T \ log \ x_{A}^{l} \\ \mu_{A}^{*(l)}(T, P_{\alpha}) &- \mu_{A}^{*(l)}(T, P_{\beta}) = R \ T \ log \ x_{A}^{l} \\ \left(\frac{\partial \mu_{A}^{*}}{\partial P}\right)_{T} &= \overline{V}_{A}^{*} \end{split}$$

•IDEAL SOLUTION

$$\mu_{\mathrm{A}}^{*(l)}(\mathbf{T}, \mathbf{P}_{\beta}) - \mu_{\mathrm{A}}^{*(l)}(\mathbf{T}, \mathbf{P}_{\alpha}) = \overline{\mathbf{V}}_{\mathrm{A}}^{*} \mathbf{\Pi}$$

$$\mu_A^{*(l)}(T, P_\alpha) - \mu_A^{*(l)}(T, P_\beta) = R T \log x_A^1$$

$$-R T \log x_A^1 = \overline{V}_A^* \pi$$

53

OSMOTIC PRESSURE

• IDEAL DILUTE SOLUTION

$$\log (1-x_B^1) \cong -x_B^1$$

$$x_B^1 \mathrel{R} T \cong \overline{V}_A^* \mathrel{\pi}$$

$$\boldsymbol{x}_B^1 \cong \boldsymbol{c}_B \ \overline{\boldsymbol{V}}_A^*$$

$$\pi \cong c_B R T$$

Van't Hoff Equation

• REAL SOLUTION

$$\mu_{A}^{*(l)}(T, P_{\alpha}) = \mu_{A}^{(l)}(T, P_{\beta})$$

$$\mu_{A}^{*(l)}(T, P_{\alpha}) = \mu_{A}^{*(l)}(T, P_{\beta}) + R T \log a_{A}$$

$$\mu_{A}^{*(l)}(T, P_{\beta}) - \mu_{A}^{*(l)}(T, P_{\alpha}) = \overline{V}_{A}^{*}(P_{\beta} - P_{\alpha})$$

$$\mu_{A}^{*(l)}(T, P_{\beta}) - \mu_{A}^{*(l)}(T, P_{\alpha}) = \overline{V}_{A}^{*} \pi$$

$-R T \log a_A = -R T \log \gamma_A x_A^1 = \overline{V}_A^* \pi$

OSMOTIC PRESSURE

Water molecule Solute molecule

Isotonic solution

Hypotonic solution

Hypertonic solution

OSMOTIC PRESSURE

Isotonic solution

Hypotonic solution

Hypertonic solution

COLLIGATIVE PROPERTIES

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

Colligative properties are proportional to the concentration of ALL solute particles
(ION + MOLECULES)

The dissociation of electrolytes modify the value of the colligative properties of a solution.

One must distinguish between:

- ➤ Ideal dilute solutions of electrolytes
- ➤ Real solutions of electrolytes

64

COLLIGATIVE PROPERTIES ELECTROLYTE SOLUTIONS

A. IDEAL DILUTE SOLUTION:

- The effective concentration is greater than the real concentration.
- The Van't Hoff factor, i, needs to be introduced.

$$M_{\nu_{+}}X_{\nu_{-}} \xrightarrow{\leftarrow} \nu_{+} M^{z_{+}} + \nu_{-} X^{z_{-}}$$

$$t = 0$$
 m 0 0
 $t = t_{eq}$ m $(1-\alpha)$ v_{+} m α v_{-} m α

$$\mathbf{m}_{\text{efect}} = \mathbf{m}(\mathbf{1} - \alpha) + \mathbf{v}_{+} \mathbf{m} \alpha + \mathbf{v}_{-} \mathbf{m} \alpha =$$

$$= \mathbf{m}(\mathbf{1} - \alpha + \mathbf{v} \alpha) = \mathbf{m}(\mathbf{1} + \alpha(\mathbf{v} - \mathbf{1})) = \mathbf{m} \mathbf{i}$$

$$i = 1 + \alpha(\nu - 1)$$

COLLIGATIVE PROPERTIES ELECTROLYTE SOLUTIONS

Vapour pressure lowering

✓ Ideal dilute solution:

$$\Delta P = x_B i P_A^*$$

➤ Freezing Point Depression (Cryoscopy)

✓Ideal dilute solution:

$$\Delta T_{m} = K_{c} m_{B} i$$

➤ Boiling point elevation (ebullioscopy)

✓ Ideal dilute solution:

$$\Delta T_{b} = K_{b} m_{B} i$$

≻Osmotic Pressure

✓ Ideal dilute solution:

$$\pi = R T c_B i$$

6/

- For a electrolyte completely dissociated: i = v
- > Vapour pressure lowering

✓Ideal dilute solution:

$$\Delta \mathbf{P} = \mathbf{x}_{\mathbf{B}} \ \mathbf{v} \ \mathbf{P}_{\mathbf{A}}^*$$

➤ Freezing Point Depression (Cryoscopy)

✓Ideal dilute solution:

$$\Delta T_{\rm m} = K_{\rm c} m_{\rm B} \nu$$

▶Boiling point elevation (ebullioscopy)

➤ Ideal dilute solution:

$$\Delta T_b = K_b m_B \nu$$

≻Osmotic Pressure

✓Ideal dilute solution:

$$\pi = R T c_B \nu$$

68

COLLIGATIVE PROPERTIES ELECTROLYTE SOLUTIONS

B. REAL SOLUTION:

- The effective concentration is greater than the real concentration.
- The expressions are the same that the ones for a real solution, but now the values depend on the total number of particles

B. REAL SOLUTIONS:

$$\Delta P = P_A^* (1 - a_A)$$

$$\log a_A = -\frac{\Delta T_m \Delta \overline{H}_{m,A}}{R T_{m,A}^2}$$

$$\log a_A = -\frac{\Delta T_b \Delta \overline{H}_{vap,A}}{R T_{b,A}^2}$$

$$-R T \log a_A = \overline{V}_A^* \Pi$$

70

COLLIGATIVE PROPERTIES

- Definition of Colligative Property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

APPLICATIONS

- Determination of solutes molecular weight.
- Antifreeze compounds.
- Ascent of sap.
- Mechanical stability of the plants.
- Use of salt and sugar to preserve food.
- Gherkin in vinegar.
- Reverse osmosis.

71

OSMOTIC PRESSURE

Reverse Osmosis: Water Purification

Reverse Osmosis: Water Purification

COLLIGATIVE PROPERTIES

- Definition of colligative property
- Vapour Pressure Lowering
- Freezing Point Depression (Cryoscopy)
- Boiling Point Elevation (Ebullioscopy)
- Osmotic Pressure
- Colligative Properties of Electrolyte Solutions
- Applications
- Summary and Conclusions

SUMMARY AND CONCLUSIONS

• VAPOUR PRESSURE LOWERING:

ightharpoonup Ideal and an ideal dilute solution: $\Delta P = x_B \ P_A^*$

 $Arr Real Solution: \Delta P = P_A^* (1 - a_A)$

ightharpoonup Electrolyte solutions: $\Delta P = x_B i P_A^*$

SUMMARY AND CONCLUSIONS

• FREEZING POINT DEPRESSION AND BOILING POINT ELEVATION

SUMMARY AND CONCLUSIONS

•FREEZING POINT DEPRESSION:

>Ideal solution: $\log x_A^I = -\frac{\Delta T_m \Delta \overline{H}_{m,A}}{R T_{m,A}^2}$

ightharpoonup Ideal dilute solution: $\Delta T_m = K_c \ m_B$

> Real Solution: $\log a_A = -\frac{\Delta T_m \Delta \overline{H}_{m,A}}{R T_{m,A}^2}$

Electrolyte solution: $\Delta T_m = K_c m_B i$

SUMMARY AND CONCLUSIONS

• BOILING POINT ELEVATION (EBULLIOSCOPY):

► Ideal solution: $log x_A^1 = -\frac{\Delta T_b \Delta H_{vap,A}}{R T_{b,A}^2}$

ightharpoonup Ideal dilute solution: $\Delta T_{\mathfrak{b}} = K_{\mathfrak{b}} \, m_{\mathfrak{b}}$

Real Solution: $\log a_A = -\frac{\Delta T_b \Delta \overline{H}_{vap,A}}{R T_{b,A}^2}$

ightharpoonup Electrolyte solution: $\Delta T_b = K_b m_B i$

SUMMARY AND CONCLUSIONS

•Osmotic PRESSURE:

►Ideal solution: -R T log $x_A^1 = \overline{V}_A^*$ π

ightharpoonup Ideal dilute solution: $\pi = c_B \ R \ T$

 $ightharpoonup \text{Real Solution:} \quad \textbf{-R T log } a_{A} = \overline{V}_{A}^{*} \ \pi$

 \succ Electrolyte solution: $\pi = R \ T \ c_B \ i$

