Tema 2: Espacios Vectoriales

José M. Salazar

Septiembre de 2020

Tema 2: Espacios Vectoriales

• Lección 2. Espacios vectoriales.

- Espacios vectoriales
 - Definición de espacio vectorial
 - Propiedades y ejemplos
- Subespacios vectoriales
 - Definición y caracterización. Ejemplos
 - Intersección y suma de subespacios vectoriales
- 3 Envolvente lineal. Dependencia e independencia lineal. Bases
- 4 Espacios vectoriales de tipo finito y coordenadas
 - El espacio vectorial \mathbb{K}^n
 - Coordenadas respecto de una base
- 5 Subespacios vectoriales y ecuaciones
 - Ecuaciones de un subespacio vectorial
 - Ecuaciones de la suma y la intersección de subespacios
- 6 Cambios de base
 - Planteamiento del problema
 - Ecuación matricial del cambio de base

Definición de espacio vectorial

Definición (Espacio vectorial)

Dado un cuerpo \mathbb{K} y un conjunto no vacío V, se dice que V es un espacio vectorial sobre \mathbb{K} , o \mathbb{K} -espacio vectorial, si en él se han definido dos operaciones, una interna, $+: V \times V \to V$, y otra externa, $\cdot: \mathbb{K} \times V \to V$, llamadas respectivamente suma y producto por un escalar, cuyas propiedades pasamos a describir:

- S1 Asociativa: $(u + v) + w = u + (v + w) \quad \forall u, v, w \in V$.
- S2 Conmutativa: $u + v = v + u \quad \forall u, v \in V$.
- S3 Existencia de elemento neutro: $\exists \bar{0} \in V$ tal que $\bar{0} + v = v + \bar{0} = v \ \forall v \in V$
- S4 Existencia de elemento opuesto: $\forall v \in V$ existe otro vector $-v \in V$ tal que $v + (-v) = \overline{0}$.

Definición de espacio vectorial

Definición (Espacio vectorial)

- M1 $a \cdot (u + v) = a \cdot u + a \cdot v$ para todo $a \in \mathbb{K}$ y para todo par de vectores $u, v \in V$.
- M2 $(a+b) \cdot u = a \cdot u + b \cdot u$ para todo par de escalares $a, b \in \mathbb{K}$ y para todo $u \in V$.
- M3 $a \cdot (b \cdot u) = (ab) \cdot u$ para todo $u \in V$ y $a, b \in \mathbb{K}$.
- M4 $1 \cdot u = u$ para todo $u \in V$, donde 1 es la unidad para el producto en \mathbb{K} .

Diremos que $(V, +, \cdot)$ tiene estructura de \mathbb{K} -espacio vectorial.

Propiedades

Habitualmente trabajaremos con el cuerpo $\mathbb{K}=\mathbb{R}$, si bien todos los resultados que se obtienen en este tema son válidos en cualquier cuerpo $\mathbb{K}.$

Observación

De las propiedades enunciadas se deducen las siguientes:

- 1. $0 \cdot u = \bar{0}$.
- 2. $a \cdot \bar{0} = \bar{0}$.
- 3. Si $a \cdot u = \overline{0}$, entonces a = 0 ó $u = \overline{0}$.
- 4. $(-a) \cdot u = a \cdot (-u) = -(a \cdot u)$.

Ejemplos

En los conjuntos que aparecen a continuación, las operaciones + y \cdot representan la suma y producto por escalar usuales en cada uno de ellos, y en todos los casos se tiene estructura de \mathbb{R} -espacio vectorial:

- $(\mathbb{R}^n, +, \cdot)$, siendo $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}.$
- $(M_{m \times n}(\mathbb{R}), +, \cdot)$, siendo $M_{m \times n}(\mathbb{R})$ el conjunto de las matrices de coeficientes reales con m filas y n columnas.
- $(\mathbb{R}_n[x], +, \cdot)$, siendo $\mathbb{R}_n[x]$ es el conjunto de los polinomios de grado menor o igual que n con coeficientes reales y una variable x.
- $(\mathbb{R}[x], +, \cdot)$, siendo $\mathbb{R}[x]$ el conjunto de los polinomios con coeficientes reales y una variable x.
- $(\mathcal{F}(I,\mathbb{R}),+,\cdot)$, siendo $\mathcal{F}(I,\mathbb{R})$ el conjunto de todas las funciones del intervalo $I\subset\mathbb{R}$ en \mathbb{R} .

Eiemplos

Otro ejemplo de espacio vectorial es el *espacio vectorial producto*. Dados $(V_1, +_1, \cdot_1)$ y $(V_2, +_2, \cdot_2)$ dos \mathbb{K} -espacios vectoriales, el \mathbb{K} -espacio vectorial producto es el conjunto $V = V_1 \times V_2$ dotado de la operación suma

y la operación producto por escalar

$$\begin{array}{cccc} \cdot : & \mathbb{K} \times V & \rightarrow & V \\ & (\lambda, (v_1, v_2)) & \mapsto & (\lambda \cdot_1 \ v_1, \lambda \cdot_2 \ v_2) \end{array}$$

Obsérvese que el espacio vectorial producto se puede definir de igual modo con n \mathbb{K} -espacios vectoriales.

Definición y caracterización de subespacio vectorial

Definición (Subespacio vectorial)

Un subconjunto $W \neq \emptyset$ del \mathbb{K} -espacio vectorial V es un subespacio vectorial de V si $(W,+,\cdot)$ es un \mathbb{K} -espacio vectorial con las mismas operaciones + $y \cdot$ que V.

Teorema

Sea $W \subset V$, con $W \neq \emptyset$ y $(V, +, \cdot)$ un \mathbb{K} -espacio vectorial. Entonces W es subespacio vectorial de V si y sólo si:

- i) W es cerrado para la suma: si $u, v \in W$, entonces $u + v \in W$.
- ii) W es cerrado para el producto por escalares: si $u \in W$ y $a \in \mathbb{K}$, entonces $a \cdot u \in W$.

Las condiciones i) y ii) son equivalentes a:

iii) $a \cdot u + b \cdot v \in W$ para todo $u, v \in W$ y $a, b \in \mathbb{K}$.

Propiedades y ejemplos

Observación

Si W es un subespacio vectorial de V, entonces $\bar{0} \in W$.

Ejemplos

- $W = \{\overline{0}\}\ y\ W = V\ son\ subespacios\ vectoriales\ de\ V$.
- El conjuntos de soluciones del sistema lineal homogéneo AX = 0 con $A \in M_{m \times n}(\mathbb{R})$ es un subespacio vectorial de \mathbb{R}^n .

Intersección y suma de subespacios vectoriales

Definición (Intersección de subespacios vectoriales)

Sean U y W subespacios vectoriales de V. La intersección de U y W, $U \cap W$, es el conjunto $U \cap W = \{v \in V \text{ tal que } v \in U \text{ } y \text{ } v \in W\}$

Definición (Suma de subespacios vectoriales)

Sean U y W subespacios vectoriales de V. La suma de U y W, U+W, es el conjunto

$$U + W = \{v \in V \text{ tal que } v = u + w \text{ con } u \in U \text{ y } w \in W\}$$

Teorema

 $U \cap W$ y U + W son subespacios vectoriales de V.

Suma directa

Definición (Suma directa)

Dados U y W subespacios vectoriales de V, si $U \cap W = \{\overline{0}\}$ se dice que la suma es suma directa y escribimos $U \oplus W$. Si V = U + W y estos son suma directa, decimos que V es la suma directa de U y W, y escribimos $V = U \oplus W$.

Observación

 $V = U \oplus W$ si y sólo si cada vector $v \in V$ se escribe de modo único como v = u + w para ciertos $u \in U$ y $w \in W$.

Combinación lineal y envolvente lineal

Definición (Combinación lineal)

Sea S un subconjunto no vacío del \mathbb{K} -espacio vectorial V. Un vector $v \in V$ es combinación lineal de la familia $S \subset V$ si $v = a_1v_1 + \cdots + a_mv_m$ con $a_i \in \mathbb{K}$ y $v_i \in S$ para todo $i = 1, \ldots, m$.

Definición (Envolvente lineal)

Llamamos envolvente lineal de S, L(S), al conjunto formado por todas las combinaciones lineales de elementos de S:

$$L(S) = \{a_1v_1 + \cdots + a_mv_m : m \in \mathbb{N}, v_i \in S, a_i \in \mathbb{K}, i = 1, \dots, m\}$$

Propiedades de las envolventes lineales

Propiedades

- L(S) es un subespacio vectorial de V.
- L(S) es el menor subespacio vectorial de V que contiene a S, esto es, si W es un subespacio vectorial de V que contiene a S, entonces $L(S) \subset W$.
- Si S es subespacio vectorial de V, entonces L(S) = S.

Teorema

Dados U, W subespacios vectoriales de V, entonces $U + W = L(U \cup W)$.

Sistemas de generadores. Dependencia e independencia lineal

Definición (Sistema de generadores)

Un conjunto de vectores $S \subset V$ es un sistema de generadores (s.g.) de V si L(S) = V. Si V admite un s.g. S con una cantidad finita de vectores, se dice que V es de tipo finito. En caso contrario, es de tipo infinito.

Definición (Dependencia lineal)

 $S = \{v_1, \dots, v_m\} \subset V$ es linealmente dependiente (l.d.) si existen $a_1, \ldots, a_m \in \mathbb{K}$, no todos nulos, tales que:

$$a_1v_1+a_2v_2+\cdots+a_mv_m=\bar{0}$$

De un vector $v \in V$ diremos que depende linealmente de S si $v \in L(S)$.

Sistemas de generadores. Dependencia e independencia lineal

Definición (Independencia lineal)

 $S = \{v_1, \dots, v_m\} \subset V$ es linealmente independiente (l.i.) si no es linealmente dependiente, esto es, de ser cierta la igualdad

$$a_1v_1 + a_2v_2 + \cdots + a_mv_m = \bar{0},$$

entonces $a_1 = \cdots = a_m = 0$.

Proposición

Si $\{v_1,\ldots,v_m\}$ es l.i. en V y $\{w_1,\ldots,w_n\}$ es s.g. de V, entonces $m\leq n$.

Bases y teoremas relacionados

Definición (Base)

Una familia de vectores $B = \{v_1, \ldots, v_n\} \subset V$ es una base de V si es l.i. y s.g. de V.

Teoremas

Sea V no nulo de tipo finito. Entonces:

- (Existencia de base) V admite una base.
- (Teorema de la base) Todas las bases de V tienen el mismo número de vectores, que llamamos dimensión de V, dim(V).
- (Teorema de ampliación de la base) Si $S \subset V$ es l.i., entonces S se puede ampliar a una base de V.

Ejemplos

Ejemplos (Bases canónicas)

- En \mathbb{R}^n , $B_c = \{e_1, \dots, e_n\}$, donde $e_i \in \mathbb{R}^n$ con 1 en la coordenada i y 0 en el resto.
- En $M_{m \times n}(\mathbb{R})$, $B_c = \{E_{11}, \dots, E_{1n}, \dots, E_{m1}, \dots, E_{mn}\}$, con $E_{ij} \in M_{m \times n}(\mathbb{R})$ con 1 en la posición (i,j) y 0 en el resto.
- En $\mathbb{R}_n[x]$, $B_c = \{1, x, \dots, x^n\}$.
- En $\mathbb{R}[x]$, $B_c = \{1, x, x^2, \dots\}$.

Ejemplos

- Por convenio, $dim(\{\bar{0}\}) = 0$.
- \mathbb{R}^n , $M_{m \times n}(\mathbb{R})$ y $\mathbb{R}_n[x]$ son de tipo finito con $dim(\mathbb{R}^n) = n$, $dim(M_{m \times n}(\mathbb{R})) = mn$ y $dim(\mathbb{R}_n[x]) = n + 1$.
- $\mathbb{R}[x]$ y $\mathcal{F}(I,\mathbb{R})$ son de tipo infinito.

Subespacios y dimensiones

Propiedades

Dado un \mathbb{K} -espacio vectorial de tipo finito, V, y dados U, W subespacios vectoriales suyos, se cumple:

- $dim(U) \leq dim(V)$.
- dim(U) = dim(V) si y sólo si U = V.
- Sea dim(U) = m y sea $S = \{v_1, \dots, v_m\} \subset U$. Entonces S es base de U si y sólo si es I.i..
- (Fórmula de las dimensiones) $dim(U+W) = dim(U) + dim(W) dim(U \cap W)$.

El espacio vectorial \mathbb{K}^n . Operaciones elementales

Dados m vectores del \mathbb{K} -espacio vectorial \mathbb{K}^n , sus coordenadas pueden verse como filas de una matriz $A \in M_{m \times n}(\mathbb{K})$

$$A_1 = (a_{11}, \ldots, a_{1n}), \ldots, A_m = (a_{m1}, \ldots, a_{mn})$$

que generan un subespacio $F(A) = L(A_1, ..., A_m)$.

Dadas $A, B \in M_{m \times n}(\mathbb{K})$, escribimos $A \to B$ si B se obtiene de A mediante operaciones elementales en filas.

Propiedades

- Si $A \rightarrow B$, entonces F(A) = F(B).
- Si $A \to E$ con E escalonada, entonces los vectores fila no nulos de E son base de F(A) = F(E).

El espacio vectorial \mathbb{K}^n . Operaciones elementales

Propiedades

- Dadas $A \in M_{m \times n}(\mathbb{K})$ y $B \in M_{p \times n}(\mathbb{K})$, L(A) = L(B) si y sólo si A y B tienen la misma matriz escalonada reducida (sin contar filas de ceros).
- Si A ∈ M_{m×n}(K), r(A) = dim(F(A)) y coincide con el número máximo de vectores fila l.i. y con el número máximo de vectores columna l.i.

A partir de estas propiedades se determina si una familia finita $S \subset \mathbb{K}^n$ es l.i, l.d., s.g. o base, pudiéndose calcular una base de L(S), así como sus ecuaciones paramétricas e implícitas.

Coordenadas

V representará un \mathbb{K} -espacio vectorial de tipo finito con dim(V) = n. Objetivo: Dado $S = \{v_1, \dots, v_r\} \subset V$, determinar si son l.i, l.d., s.g. o base de V y calcular una base de L(S).

Observación (Coordenadas respecto de una base)

Sea $B = \{e_1, \dots, e_n\}$ base del \mathbb{K} -espacio vectorial V. Para todo $x \in V$ existen $x_1, \dots, x_n \in \mathbb{K}$ únicos y tales que $x = x_1e_1 + \dots + x_ne_n$. A la n-tupla $(x_1, \dots, x_n) \in \mathbb{K}^n$ se la llama coordenadas de x respecto de B y la denotaremos por X_B .

Coordenadas

Propiedades

Sea B base de V fija. Si $x, y \in V$ cumplen $X_B = (x_1, ..., x_n)$, $Y_B = (y_1, ..., y_n)$, entonces:

- 1. $[x+y]_B = (x_1 + y_1, \dots, x_n + y_n) = X_B + Y_B$.
- 2. $[a \cdot x]_B = (ax_1, \ldots, ax_n) = a \cdot X_B$.
- 3. Dado $S = \{v_1, \dots, v_r\} \subset V$, S es l.i., l.d., sistema de generadores o base de V si y sólo si lo son sus vectores de coordenadas respecto de B en \mathbb{K}^n .

Coordenadas

Para determinar si $S = \{x_1, \dots, x_r\} \subset V$ es I.i, I.d., s.g. o base de V y calcular una base de L(S), se sigue el siguiente procedimiento:

Procedimiento

- Fijar una base B de V.
- Calcular, resolviendo sistemas compatibles determinados, los vectores de coordenadas respecto de B de $\{x_1, \ldots, x_r\}$, a los que denotados por $\{X_1, \ldots, X_r\} \subset \mathbb{K}^n$.
- Trabajar en \mathbb{K}^n en vez de V contruyendo la matriz A con filas $A_i = X_i$.
- Escalonar A → E. El rango r(A) = r(E) nos dice si S es l.i, l.d., s.g. o base de V. Además, las filas no nulas de E proporcionan las coordenadas respecto de B de una base de L(S).

Ecuaciones paramétricas

Sea $W = L(S) \subset V$, con S finito y dim(V) = n, y sea B base de V. Las ecuaciones paramétricas de W respecto de B se hallan así:

Procedimiento

- Se determinan las coordenadas de los vectores de S respecto de B y se expresan como filas de una matriz A que se escalona, $A \rightarrow E$.
- Las filas no nulas de E, $\{W_{1B}, \ldots, W_{rB}\}$, son las coordenadas respecto de B de los vectores de una base B_W de W.
- Las ecuaciones paramétricas son

$$\begin{cases} x_1 &= \lambda_1 w_{11} + \dots + \lambda_r w_{r1} \\ &\vdots \\ x_n &= \lambda_1 w_{1n} + \dots + \lambda_r w_{rn} \end{cases}$$
 con $W_{iB} = (w_{i1}, \dots, w_{in})$ para todo $i = 1, \dots, r$.

En este caso, dim(W) coincide con el número de parámetros λ_i .

Ecuaciones implícitas

Dado $W = L(S) \subset V$, con S finito, y dada una base B de V, las ecuaciones implícitas de W respecto de B se obtienen así:

Procedimiento

- Se calculan las coordenadas $\{W_{1B}, \dots, W_{rB}\} \subset \mathbb{K}^n$ de una base de W respecto de B.
- Se construye la matriz A que las tiene por filas, añadiendo una última fila representando las coordenadas $(x_1 ... x_n)$ de un vector genérico de W respecto de B. La nueva matriz A' tiene r+1 filas y n columnas.
- r(A) = r(A') = r de donde se deducen, escalonando A' por ejemplo $(A' \to E')$, las ecuaciones implícitas de W que deben ser los n r elementos no nulos de la última fila de E' igualados a 0.

En este caso, r = dim(W) = n - número de ecuaciones implícitas.

Paso de implícitas a paramétricas. Subespacios nulo y total

Observación

Si W viene dado en forma de ecuaciones implícitas, para pasar y paramétricas y obtener una base únicamente debe escalonarse la matriz A de coeficientes para eliminar las ecuaciones que sobran y resolver el sistema equivalente resultante. La dimensión de W será $\dim(W) = n - r(A)$.

Observación

- Si $W = \{\bar{0}\}$, sus ecuaciones ímplícitas son $x_1 = \cdots = x_n = 0$, W no tiene base y tampoco ecuaciones paramétricas.
- Si W = V, no tiene ecuaciones implícitas, unas ecuaciones paramétricas son $x_1 = \lambda_1, \dots, x_n = \lambda_n$ y una base será cualquier base de V.

Ecuaciones de la suma y la intersección de subespacios

Sean U y W subespacios vectoriales de V, con V de tipo finito.

Procedimiento (Ecuaciones de U + W)

Determinando bases B_U y B_W de U y W se tiene $U+W=L(U\cup W)=L(B_U\cup B_W)$. A partir de aquí se calculan las ecuaciones paramétricas y ecuaciones implícitas de la suma.

Procedimiento (Ecuaciones de $U \cap W$)

- Ecuaciones implícitas: se obtienen a partir de la unión de las ecuaciones implícitas de U y las de W.
- Ecuaciones paramétricas: se obtienen a partir de las implícitas resolviendo el sistema lineal.

Cambio de base: planteamiento del problema

Sea V de tipo finito con dim(V) = n y sean $B = \{e_1, \ldots, e_n\}$ y $B' = \{e'_1, \ldots, e'_n\}$ dos bases distintas. Objetivo: dado $x \in V$, relacionar las coordenadas $X_B = (x_1, \ldots, x_n)$

con las coordenadas $X_{B'} = (x'_1, \dots, x'_n)$. Consideramos las coordenadas de los vectores de B' en la base B:

$$e'_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n$$

 \vdots
 $e'_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n$

Se tiene

$$x = x_1 e_1 + \cdots + x_n e_n = x_1' e_1' + \cdots + x_n' e_n'.$$

Cálculo de la ecuación matricial

Por consiguiente:

$$x_1e_1+\cdots+x_ne_n=x_1'(a_{11}e_1+\cdots+a_{n1}e_n)+\cdots+x_n'(a_{1n}e_1+\cdots+a_{nn}e_n)$$

Reordenando términos, queda:

$$x_1e_1+\dots+x_ne_n=(a_{11}x_1'+\dots+a_{1n}x_n')e_1+\dots+(a_{n1}x_1'+\dots+a_{nn}x_n')e_n.$$

Así obtenemos las ecuaciones de cambio de base de B' en B:

$$\begin{cases} x_1 = a_{11}x'_1 + \dots + a_{1n}x'_n \\ \vdots \\ x_n = a_{n1}x'_1 + \dots + a_{nn}x'_n \end{cases}$$

Cálculo de la ecuación matricial

En forma matricial:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$$

Si llamamos P a la matriz de arriba, podemos escribir, $X_B = PX_{B'}$ supuestos X_B y $X_{B'}$ en forma de vectores columna. Ésta es la ecuación matricial del cambio de base y P es la matriz de cambio de base de B' en B o matriz de paso, escribiéndose P = M(B', B).

Observaciones

- Las columnas de P son las coordenadas de los vectores de B' respecto de B.
- P es regular.
- $P^{-1} = M(B, B')$.